雙曲線數(shù)學公式的兩個焦點為F1、F2,P為雙曲線上一點,|OP|<5,|PF1|、|F1F2|、|PF2|成等比數(shù)列,則b2=________.

1
分析:通過等比數(shù)列雙曲線的定義,余弦定理推出:|OP|2=20+3b2.利用|OP|<5,b∈N,求出b的值.
解答:由題意,|PF1|、|F1F2|、|PF2|成等比數(shù)列可知,|F1F2|2=|PF1||PF2|,
即4c2=|PF1||PF2|,
由雙曲線的定義可知|PF1|-|PF2|=4,即|PF1|2+|PF2|2-2|PF1||PF2|=16,
可得|PF1|2+|PF2|2-8c2=16…①
設∠POF1=θ,則∠POF2=π-θ,
由余弦定理可得:|PF2|2=c2+|OP|2-2|OF2||OP|cos(π-θ),|PF1|2=c2+|OP|2-2|OF1||OP|cosθ,
|PF2|2+PF1|2=2c2+2|OP|2,…②,
由①②化簡得:|OP|2=8+3c2=20+3b2
因為|OP|<5,b∈N,所以20+3b2<25.
所以b=1.
故答案為:1.
點評:本題考查雙曲線的定義,余弦定理以及等比數(shù)列的應用,是有難度的綜合問題,考查分析問題解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
-1(a>0,b>0)
的兩個焦點為F:(-2,0),F(xiàn):(2,0),點P(3,
7
)

的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為2
2
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年高考數(shù)學第二輪復習熱點專題測試卷:平面解析幾何(含詳解) 題型:044

已知雙曲線的兩個焦點為F:(-2,0),F(xiàn):(2,0),點P(3,)的曲線C上.

(Ⅰ)求雙曲線C的方程;

(Ⅱ)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程

查看答案和解析>>

科目:高中數(shù)學 來源:2009年高考數(shù)學第二輪執(zhí)點專題測試、平面解析幾何(含詳解) 題型:044

已知雙曲線的兩個焦點為F:(-2,0),F(xiàn):(2,0),點P(3,)的曲線C上.

(Ⅰ)求雙曲線C的方程;

(Ⅱ)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線的兩個焦點為F­1,F(xiàn)­2 ,點P在雙曲線上,△的面積為,則                              

A.2                       B.                        C.-2                   D.  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線的兩個焦點為F­1,F(xiàn)­2 ,點P在雙曲線上,的面積為,則                     

A.2                   B.               C.-2               D.-

查看答案和解析>>

同步練習冊答案