【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板兩直角邊所在直線分別與直線BC、CD交于點(diǎn)M、N.

(1)如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是
(2)如圖2,若點(diǎn)O在正方形的中心(即兩對(duì)角線交點(diǎn)),則(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由;
(3)如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過(guò)程中可形成什么圖形?
(4)如圖4,是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部)移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說(shuō)明)

【答案】
(1)OM=ON
(2)

解:仍成立.

證明:如圖2,

連接AC、BD,則

由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°

∵∠MON=90°

∴∠BOM=∠CON

在△BOM和△CON中

∴△BOM≌△CON(ASA)

∴OM=ON.


(3)

解:如圖3,

過(guò)點(diǎn)O作OE⊥BC,作OF⊥CD,垂足分別為E、F,則∠OEM=∠OFN=90°

又∵∠C=90°

∴∠EOF=90°=∠MON

∴∠MOE=∠NOF

在△MOE和△NOF中

∴△MOE≌△NOF(AAS)

∴OE=OF

又∵OE⊥BC,OF⊥CD

∴點(diǎn)O在∠C的平分線上

∴O在移動(dòng)過(guò)程中可形成線段AC.


(4)

解:O在移動(dòng)過(guò)程中可形成直線AC.


【解析】(1)解:若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是:OM=ON;

(1)根據(jù)△OBM與△ODN全等,可以得出OM與ON相等的數(shù)量關(guān)系;
   。2)連接AC、BD,則通過(guò)判定△BOM≌△CON,可以得到OM=ON;
    (3)過(guò)點(diǎn)O作OE⊥BC,作OF⊥CD,可以通過(guò)判定△MOE≌△NOF,得出OE=OF,進(jìn)而發(fā)現(xiàn)點(diǎn)O在∠C的平分線上;
    (4)可以運(yùn)用(3)中作輔助線的方法,判定三角形全等并得出結(jié)論.本題主要考查了四邊形中的正方形,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造全等三角形.解題時(shí)需要運(yùn)用全等三角形的判定與性質(zhì),以及角平分線的判定定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

1)判斷直線與曲線的位置關(guān)系,并說(shuō)明理由;

2)若直線和曲線相交于兩點(diǎn),且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD為正方形,PD⊥平面ABCD且PD=AD,則下列命題中錯(cuò)誤的是( 。

A.過(guò)BD且與PC平行的平面交PA于M點(diǎn),則M為PA的中點(diǎn)
B.過(guò)AC且與PB垂直的平面交PB于N點(diǎn),則N為PB的中點(diǎn)
C.過(guò)AD且與PC垂直的平面交PC于H點(diǎn),則H為PC的中點(diǎn)
D.過(guò)P、B、C的平面與平面PAD的交線為直線l,則l∥AD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動(dòng)點(diǎn)(不含端點(diǎn)B、C).若線段AD長(zhǎng)為正整數(shù),則點(diǎn)D的個(gè)數(shù)共有( 。

A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,底面是邊長(zhǎng)為的正方形,四邊形是矩形,平面平面 , 分別是的中點(diǎn).

Ⅰ)求證: 平面

Ⅱ)求證:平面平面

Ⅲ)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的焦點(diǎn)是橢圓 )的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)動(dòng)點(diǎn) 在橢圓上,且,記直線軸上的截距為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

(Ⅰ)已知,證明:

(Ⅱ)若對(duì)任意實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是圓的直徑,點(diǎn)在圓上,矩形所在的平面垂直于圓所在的平面,
(1)證明:平面⊥平面;
(2)當(dāng)三棱錐的體積最大時(shí),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;

3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案