【題目】已知函數(shù)f(x)=2 sin(ax﹣ )cos(ax﹣ )+2cos2(ax﹣ )(a>0),且函數(shù)的最小正周期為
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0, ]上的最大值和最小值.

【答案】解:函數(shù)f(x)=2 sin(ax﹣ )cos(ax﹣ )+2cos2(ax﹣ )(a>0), 化簡可得:f(x)= sin(2ax﹣ )+cos(2ax﹣ )+1
= cos2ax+sin2ax+1
=2sin(2ax+ )+1
∵函數(shù)的最小正周期為 .即T=
由T= ,可得a=2.
∴a的值為2.
故f(x)=2sin(4x+ )+1;
(Ⅱ)x∈[0, ]時(shí),4x+ ∈[0, ].
當(dāng)4x+ = 時(shí),函數(shù)f(x)取得最小值為 =1-
當(dāng)4x+ = 時(shí),函數(shù)f(x)取得最大值為2×1+1=3
∴f(x)在[0, ]上的最大值為3,最小值為1-
【解析】(Ⅰ)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求a的值.(Ⅱ)x∈[0, ]時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì)求,可求f(x)最大值和最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別是雙曲線的左右焦點(diǎn),過的直線與雙曲線的左右兩支分別交于兩點(diǎn).若為等邊三角形,則的面積為(

A. 8 B. C. D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l與拋物線交于點(diǎn)A,B兩點(diǎn),與x軸交于點(diǎn)M,直線OA,OB的斜率之積為.

(1)證明:直線AB過定點(diǎn);

(2)以AB為直徑的圓P交x軸于E,F(xiàn)兩點(diǎn),O為坐標(biāo)原點(diǎn),求|OE||OF|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2-x+c定義在區(qū)間[0,1]上,x1,x2

[0,1],且x1≠x2,求證:

(1)f(0)=f(1);

(2)|f(x2)-f(x1)|<|x1-x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某住宅小區(qū)為了使居民有一個(gè)優(yōu)雅、舒適的生活環(huán)境,計(jì)劃建一個(gè)八邊形的休閑小區(qū),其主體造型的平面圖是由兩個(gè)相同的矩形ABCD和矩形EFGH構(gòu)成的面積是200 m2的十字形區(qū)域,現(xiàn)計(jì)劃在正方形MNPQ上建一花壇,造價(jià)為4 200元/m2,在四個(gè)相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價(jià)為210元/m2,再在四個(gè)空角上鋪草坪,造價(jià)為80元/m2.

(1)設(shè)總造價(jià)為S元,AD的邊長為x m,試建立S關(guān)于x的函數(shù)解析式;

(2)計(jì)劃至少要投多少萬元才能建造這個(gè)休閑小區(qū)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)經(jīng)過點(diǎn)(2 ,1),且以橢圓短軸的兩個(gè)端點(diǎn)和一個(gè)焦點(diǎn)為頂點(diǎn)的三角形是等邊三角形.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)P(x,y)是橢圓E上的動(dòng)點(diǎn),M(2,0)為一定點(diǎn),求|PM|的最小值及取得最小值時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓內(nèi)接四邊形ABCD中,AB=3,AD=2,∠BCD=1200

(1)求線段BD的長與圓的面積

(2)求四邊形ABCD的周長的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象與x軸的交點(diǎn)橫坐標(biāo)構(gòu)成一個(gè)公差為 的等差數(shù)列,要得到g(x)=cos(ωx+ )的圖象,可將f(x)的圖象(
A.向右平移 個(gè)單位
B.向左平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是雙曲線E 的左、右焦點(diǎn),P是雙曲線上一點(diǎn), 到左頂點(diǎn)的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)時(shí), 的面積為,求此雙曲線的方程。

查看答案和解析>>

同步練習(xí)冊答案