【題目】命題方程表示橢圓,命題恒成立;
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題為真,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)根據(jù)方程表示橢圓,得到,求解,即可得出結(jié)果;
(2)先由(1),得到命題等價(jià)于;再由命題等價(jià)于不等式,恒成立;得到命題等價(jià)于;根據(jù)命題為真,得到命題為假,命題為真,進(jìn)而可求出結(jié)果.
(1)若方程表示橢圓,則橢圓標(biāo)準(zhǔn)方程為,
所以只需要,即;
即命題為真命題時(shí),實(shí)數(shù)的取值范圍為
(2)由(1)可知:命題等價(jià)于;
命題恒成立,等價(jià)于不等式,恒成立;
①當(dāng)時(shí),不等式顯然成立;
②當(dāng)時(shí),只需,即,即
綜上可知:;即命題等價(jià)于;
因?yàn)槊}為真,所以命題為假,命題為真,
即,解得:.
即實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
支付金額 支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計(jì)該校學(xué)生中上個(gè)月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個(gè)月支付金額大于2000元的概率;
(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒(méi)有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,已知橢圓,拋物線的焦點(diǎn)是的一個(gè)頂點(diǎn),設(shè)是上的動(dòng)點(diǎn),且位于第一象限,記在點(diǎn)處的切線為.
(1)求的值和切線的方程(用表示)
(2)設(shè)與交于不同的兩點(diǎn),線段的中點(diǎn)為,直線與過(guò)且垂直于軸的直線交于點(diǎn).
(i)求證:點(diǎn)在定直線上;
(ii)設(shè)與軸交于點(diǎn),記的面積為,的面積為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為2的圓位于軸右側(cè),且與直線相切.
(1)求圓的方程;
(2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,,,,E為AB的中點(diǎn)將沿CE折起,使點(diǎn)B到達(dá)點(diǎn)F的位置,且平面CEF與平面ADCE所成的二面角為.
求證:平面平面AEF;
求直線DF與平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的焦點(diǎn)為F,圓,點(diǎn)為拋物線上一動(dòng)點(diǎn).已知當(dāng)的面積為.
(I)求拋物線方程;
(II)若,過(guò)P做圓C的兩條切線分別交y軸于M,N兩點(diǎn),求面積的最小值,并求出此時(shí)P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣畜牧技術(shù)員張三和李四9年來(lái)一直對(duì)該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場(chǎng)年養(yǎng)殖數(shù)量單位:萬(wàn)只與相應(yīng)年份序號(hào)的數(shù)據(jù)表和散點(diǎn)圖如圖所示,根據(jù)散點(diǎn)圖,發(fā)現(xiàn)y與x有較強(qiáng)的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場(chǎng)的個(gè)數(shù)單位:個(gè)關(guān)于x的回歸方程.
年份序號(hào)x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年養(yǎng)殖山羊萬(wàn)只 |
根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計(jì)量,求y關(guān)于x的線性回歸方程參考統(tǒng)計(jì)量:,;
試估計(jì):該縣第一年養(yǎng)殖山羊多少萬(wàn)只
到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?
附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,平面,為邊上一點(diǎn),,.
(1)證明:平面平面.
(2)若,試問(wèn):是否與平面平行?若平行,求三棱錐的體積;若不平行,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品廠為了檢查甲乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:克),質(zhì)量值落在(495,510]的產(chǎn)品為合格品,否則為不合格品.表是甲流水線樣本頻數(shù)分布表,圖是乙流水線樣本頻率分布直方圖.
表甲流水線樣本頻數(shù)分布表
產(chǎn)品質(zhì)量/克 | 頻數(shù) |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |
(1)若以頻率作為概率,試估計(jì)從兩條流水線分別任取1件產(chǎn)品,該產(chǎn)品恰好是合格品的概率分別是多少;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)作出2×2列聯(lián)表,并回答能否有95%的把握認(rèn)為“產(chǎn)品的包裝質(zhì)量與兩條自動(dòng)包裝流水線的選擇有關(guān)”
χ2
甲流水線 | 乙流水線 | 總計(jì) | |
合格品 | |||
不合格品 | |||
總計(jì) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com