根據(jù)調(diào)查,某學(xué)校開設(shè)了“街舞”、“圍棋”、“武術(shù)”三個(gè)社團(tuán),三個(gè)社團(tuán)參加的人數(shù)如下表所示:
為調(diào)查社團(tuán)開展情況,學(xué)校社團(tuán)管理部采用分層抽樣的方法從中抽取一個(gè)容量為n的樣本,已知從“街舞”社團(tuán)抽取的同學(xué)8人.
社團(tuán)街舞圍棋武術(shù)
人數(shù)320240200
(Ⅰ)求n的值和從“圍棋”社團(tuán)抽取的同學(xué)的人數(shù);
(Ⅱ)若從“圍棋”社團(tuán)抽取的同學(xué)中選出2人擔(dān)任該社團(tuán)活動(dòng)監(jiān)督的職務(wù),已知“圍棋”社團(tuán)被抽取的同學(xué)中有2名女生,求至少有1名女同學(xué)被選為監(jiān)督職務(wù)的概率.
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)由題意可得
n
320+240+200
=
8
320
,解方程可得n值,由比例易得所求;
(Ⅱ)由(Ⅰ)知,從“圍棋”社團(tuán)抽取的同學(xué)為6人,其中2位女生記為A,B,4位男生記為C,D,E,F(xiàn),列舉可得共15種,其中沒有女生的有6種,故所求概率1-
6
15
=
3
5
解答: 解:(Ⅰ)由題意可得
n
320+240+200
=
8
320
,解得n=19,
從“圍棋”社團(tuán)抽取的同學(xué)240×
8
320
=6人
(Ⅱ)由(Ⅰ)知,從“圍棋”社團(tuán)抽取的同學(xué)為6人,
其中2位女生記為A,B,4位男生記為C,D,E,F(xiàn),
則從這6位同學(xué)中任選2人,不同的結(jié)果有
{A,B},{A,C},{A,D},{A,E},{A,F(xiàn)},{B,C},
{B,D},{B,E},{B,F(xiàn)},{C,D},{C,E},{C,F(xiàn)},
{D,E},{D,F(xiàn)},{E,F(xiàn)},共15種,
從這6位同學(xué)中任選2人,沒有女生的有:{C,D},{C,E},
{C,F(xiàn)},{D,E},{D,F(xiàn)},{E,F(xiàn)},共6種
故至少有1名女同學(xué)被選中的概率1-
6
15
=
3
5
點(diǎn)評(píng):本題考查列舉法求基本事件數(shù)以及事件發(fā)生的概率,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

福州、廈門、莆田、龍巖四個(gè)城市,它們分別有一個(gè)著名的旅游景點(diǎn)鼓山、鼓浪嶼、湄洲島、龍崆洞,把福州、廈門、莆田、龍巖四個(gè)城市和它們的旅游景點(diǎn)鼓山、鼓浪嶼、湄洲島、龍崆洞分別寫成左右兩列,現(xiàn)在一名旅游愛好者隨機(jī)用4條線把左右全部連接起來,構(gòu)成“一一對應(yīng)”,已知連對的得2分,連錯(cuò)的得0分(如圖所示是一種“一一對應(yīng)”的連法,連對的只有一個(gè)“廈門→鼓浪嶼”).
(Ⅰ)求該旅游愛好者只得2分的概率;
(Ⅱ)該旅游愛好者的得分記為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2011
2011
,試問函數(shù)f(x)在其定義域內(nèi)有多少個(gè)零點(diǎn)?( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,不等式組
x+y≥0
x-y+4≥0
x≤a
表示平面區(qū)域面積是4,則常數(shù)a的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2wx+
3
sinwx•coswx-1(w>0)的周期為π.
(1)當(dāng)x∈[0,
π
2
]時(shí),求f(x)的取值范圍;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正實(shí)數(shù),且其前n項(xiàng)和Sn滿足2Sn=an2+an(n∈N*).
(1)證明:數(shù)列{an}是等差數(shù)列;
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,若點(diǎn)(n,Sn)均在函數(shù)y=f(x)的圖象上,且f(x)=x2-9x,若數(shù)列的第k項(xiàng)滿足5<ak<8,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,點(diǎn)(1,0)在函數(shù)f(x)=2anx2-an+1x的圖象上.
(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè)bn=log2a2n-1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線x2-
y2
2
=1的左焦點(diǎn)F引圓x2+y2=1的切線FP交雙曲線右支于點(diǎn)P,T為切點(diǎn)M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|-|MT|=( 。
A、
2
B、1
C、
2
-1
D、
2
+1

查看答案和解析>>

同步練習(xí)冊答案