19.如圖,在正方體ABCD-A1B1C1D1中中,E,F(xiàn),G,H,M,N分別是正方體六個(gè)面的中心,求證:平面EFG∥平面HMN.

分析 以點(diǎn)D為坐標(biāo)原點(diǎn),分別以DA,DC,DD1所在的直線為x軸,y軸,z軸建立空間直角坐標(biāo)系Dxyz,得到$\overrightarrow{EF}$∥$\overrightarrow{HM}$,$\overrightarrow{FG}$∥$\overrightarrow{NH}$,從而證出結(jié)論.

解答 證明:以點(diǎn)D為坐標(biāo)原點(diǎn),分別以DA,DC,DD1所在的直線為x軸,y軸,z軸建立空間直角坐標(biāo)系Dxyz,
如圖示:

不妨設(shè)正方體的棱長(zhǎng)為2,
則E(1,1,0),F(xiàn)(1,0,1),G(2,1,1),
H(1,2,1),M(1,1,2),N(0,1,1).
所以$\overrightarrow{EF}$=(0,-1,1),
$\overrightarrow{FG}$=(1,1,0),
$\overrightarrow{HM}$=(0,-1,1),
$\overrightarrow{NH}$=(1,1,0),
所以$\overrightarrow{EF}$∥$\overrightarrow{HM}$,$\overrightarrow{FG}$∥$\overrightarrow{NH}$
∴EF∥HM,F(xiàn)G∥NH.
因?yàn)镠M⊆平面HMN,NH⊆平面HMN,
所以EF∥平面HMN,F(xiàn)G∥平面HMN.
因?yàn)镋F⊆平面EFG,F(xiàn)G⊆平面EFG,
EF∩FG=F,
所以平面EFG∥平面HMN.

點(diǎn)評(píng) 本題考查了面面平行問題,考查向量的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”,若f(x)=4x-m2x+1+m2-5為定義域R上的“局部奇函數(shù)”,則實(shí)數(shù)m的取值范圍是1-$\sqrt{5}$<m≤2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知圓M過三點(diǎn)A(0,0),B(1,1),C(4,2),過點(diǎn)D(-1,4)作圓M的兩條切線,兩切點(diǎn)分別為E,F(xiàn),
(I)  求圓M的方程.
(II) 求切線DE,DF方程
( III)求直線EF的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=x+$\frac{a}{x}$+3,x∈N*,在x=5時(shí)取到最小值,則實(shí)數(shù)a的所有取值的集合為[20,30].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx-1,x≤0}\\{{2}^{-x}-1,x>0}\end{array}\right.$,(k<0),當(dāng)方程f[f(x)]=-$\frac{1}{2}$恰有三個(gè)實(shí)數(shù)根時(shí),實(shí)數(shù)k的取值范圍為( 。
A.(-$\frac{1}{2}$,0)B.[-$\frac{1}{2}$,0)C.(-∞,-$\frac{1}{2}$]D.(-∞,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=lnx-a(x-1),其中a為實(shí)數(shù).
(Ⅰ)討論并求出f(x)的極值;
(Ⅱ)在a<1時(shí),是否存在m>1,使得對(duì)任意的x∈(1,m)恒有f(x)>0,并說(shuō)明理由;
(Ⅲ) 確定a的可能取值,使得存在n>1,對(duì)任意的x∈(1,n),恒有|f(x)|<(x-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在等差數(shù)列{an}中,a4+a5+a6+a7=56,a4•a7=187,求a1和d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,tan2$\frac{A}{2}$+tan2$\frac{B}{2}$+tan2$\frac{C}{2}$的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)=x(\frac{1}{{{2^x}-1}}+\frac{1}{2})$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求證:當(dāng)x≠0時(shí),f(x)>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案