【題目】如圖,在三棱錐中, , 分別為線段上的點,且,
.
(1)求證: 平面;
(2)若與平面所成的角為,求平面與平面所成銳二面角的余弦值.
【答案】(1)詳見解析;(2) .
【解析】試題分析; (1)連接,據(jù)勾股定理可證,即
進而證得平面, 又由勾股定理證得,于是平面
(2)由(1)知兩兩互相垂直,建立直角坐標系,由空間向量的夾角公式可求平面與平面所成銳二面角的余弦值.
試題解析:(1)證明:連接,據(jù)題知
∵在中, ∴,且
∴,∴ ,即
∵ ∴平面, 平面,∴
∵在中, ,∴
則,∴
∵,∴ 平面
(2)由(1)知兩兩互相垂直,建立如圖所示的直角坐標系,
且與平面所成的角為,有,則
∴
又∵由(1)知,∴ 平面
∴為平面的一個法向量
設(shè)平面的法向量為,則
∴,令,則
∴為平面的一個法向量
∴
故平面與平面的銳二面角的大小為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中實數(shù)為常數(shù),為自然對數(shù)的底數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,解關(guān)于的不等式;
(3)當(dāng)時,如果函數(shù)不存在極值點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)若函數(shù)的圖像與直線沒有交點,求的取值范圍;
(3)若函數(shù),是否存在實數(shù)使得最小值為0,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1的各個頂點與各棱的中點共20個點中,任取2點連成直線,在這些直線中任取一條,它與對角線BD1垂直的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點分別為.過原點的直線與橢圓交于兩點,點是橢圓上的點,若, ,且的周長為.
(1)求橢圓的方程;
(2) 設(shè)橢圓在點處的切線記為直線,點在上的射影分別為,過作的垂線交軸于點,試問是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平等因素的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,次品數(shù)P(萬件)與日產(chǎn)量x(萬件)之間滿足關(guān)系: 已知每生產(chǎn)l萬件合格的元件可以盈利2萬元,但每生產(chǎn)l萬件次品將虧損1萬元.(利潤=盈利一虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的利潤T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)當(dāng)工廠將這種儀器的元件的日產(chǎn)量x定為多少時獲得的利潤最大,最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點為P1 , P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對一批產(chǎn)品的長度(單位:mm)進行抽樣檢測,下圖為檢測結(jié)果的頻率分布直方圖.根據(jù)標準,產(chǎn)品長度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.用頻率估計概率,現(xiàn)從該批產(chǎn)品中隨機抽取一件,則其為二等品的概率為( )
A.0.09
B.0.20
C.0.25
D.0.45
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com