已知圓C:x2+y2+4x-12y+24=0.若直線l過點P(0,5)且被圓C截得的線段長為4
3
,則l的方程為(  )
分析:先求出圓心C(-2,6),半徑為4,再分類討論,利用直線被圓C截得的線段長為4
3
,結(jié)合垂徑定理,即可得出結(jié)論.
解答:解:圓C:x2+y2+4x-12y+24=0可化為(x+2)2+(y-6)2=16,
∴圓心C(-2,6),半徑為4.
當直線的斜率不存在時,x=0,則y=6±2
3
,此時直線被圓C截得的線段長為4
3
,滿足題意;
當直線的斜率存在時,設(shè)直線方程為y=kx+5,即kx-y+5=0,
∵直線被圓C截得的線段長為4
3
,
∴圓心到直線的距離d=
|-2k-6+5|
k2+1
=
16-(2
3
)2

∴k=
3
4
,
∴l(xiāng)的方程為3x-4y+20=0.
綜上,l的方程為3x-4y+20=0或x=0.
故選C.
點評:本題考查直線方程,考查直線與圓的位置關(guān)系,考查垂徑定理,正確運用垂徑定理是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件雙曲線的標準方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準線相切,若直線l:
x
a
y
b
=1
與圓C有公共點,且公共點都為整點(整點是指橫坐標.縱坐標都是整數(shù)的點),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習冊答案