【題目】設(shè)數(shù)列是公差大于的等差數(shù)列, 為數(shù)列的前項(xiàng)和.已知,且構(gòu)成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,設(shè)是數(shù)列的前項(xiàng)和,證明: .
【答案】(1);(2)證明見(jiàn)解析.
【解析】試題分析:(1)(1)利用等差數(shù)列前n項(xiàng)和、通項(xiàng)公式和等比數(shù)列,列出方程組,求出首項(xiàng)與公差,由此能求出數(shù)列{an}的通項(xiàng)公式.
(2)推導(dǎo)出bn==(2n-1) ,利用錯(cuò)位相減法求出數(shù)列{bn}的前n項(xiàng)和,由此能證明Tn<6.
試題解析:
(1)設(shè)數(shù)列{an}的公差為d,則d>0.
因?yàn)?/span>S3=9,所以a1+a2+a3=3a2=9,即a2=3.
因?yàn)?a1,a3-1,a4+1構(gòu)成等比數(shù)列,
所以(2+d)2=2(3-d)(4+2d),
所以d=2.所以an=a2+(n-2)d=2n-1.
(2)證明:因?yàn)?/span>=2n-1(n∈N*),所以bn==(2n-1) ,
所以Tn=1×+3×+…+(2n-1)×,①
所以Tn=1×+3×+…+(2n-3)×+(2n-1)×,②
由①②兩式相減得Tn=1+2×+2×+…+2×-(2n-1)×=1+-=3--,整理化簡(jiǎn)得Tn=6-.又因?yàn)?/span>n∈N*,所以Tn=6-<6.
點(diǎn)睛:用錯(cuò)位相減法求和應(yīng)注意的問(wèn)題:(1)要善于識(shí)別題目類(lèi)型,特別是等比數(shù)列公比為負(fù)數(shù)的情形;(2)在寫(xiě)出“Sn”與“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫(xiě)出“Sn-qSn”的表達(dá)式;(3)在應(yīng)用錯(cuò)位相減法求和時(shí),若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形所在平面與半圓弧所在平面垂直,是上異于,的點(diǎn).
(1)證明:平面平面;
(2)在線段上是否存在點(diǎn),使得平面?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(I)求直方圖中的a值;
(II)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究所計(jì)劃利用“神舟十一號(hào)”飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品質(zhì)量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排,通過(guò)調(diào)查,搭載每件產(chǎn)品有關(guān)數(shù)據(jù)如表:
因素 | 產(chǎn)品 | 產(chǎn)品 | 備注 |
研制成本、搭載費(fèi)用之和/萬(wàn)元 | 20 | 30 | 計(jì)劃最大投資 |
金額300萬(wàn)元產(chǎn)品質(zhì)量/千克 | 10 | 5 | 最大搭載 |
質(zhì)量110千克預(yù)計(jì)收益/萬(wàn)元 | 80 | 60 | —— |
則使總預(yù)計(jì)收益達(dá)到最大時(shí), 兩種產(chǎn)品的搭載件數(shù)分別為( )
A. 9,4 B. 8,5 C. 9,5 D. 8,4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從集合中任取三個(gè)不同的元素作為直線中的值,若直線傾斜角小于,且在軸上的截距小于,那么不同的直線條數(shù)有( )
A. 109條B. 110條C. 111條D. 120條
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】研究發(fā)現(xiàn),北京 PM 2.5 的重要來(lái)源有土壤塵、燃煤、生物質(zhì)燃燒、汽車(chē)尾氣與垃圾焚燒、工業(yè)污染和二次無(wú)機(jī)氣溶膠,其中燃煤的平均貢獻(xiàn)占比約為 18%.為實(shí)現(xiàn)“節(jié)能減排”,還人民“碧水藍(lán)天”,北京市推行“煤改電”工程,采用空氣源熱泵作為冬天供暖.進(jìn)入冬季以來(lái),該市居民用電量逐漸增加,為保證居民取暖,市供電部門(mén)對(duì)該市 100 戶居民冬季(按 120 天計(jì)算)取暖用電量(單位:度)進(jìn)行統(tǒng)計(jì)分析,得到居民冬季取暖用電量的頻率分布直方圖如圖所示.
(1)求頻率分布直方圖中的值;
(2)從這 100 戶居民中隨機(jī)抽取 1 戶進(jìn)行深度調(diào)查,求這戶居民冬季取暖用電量在[3300,3400]的概率;
(3)在用電量為[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四組居民中,用分層抽樣的方法抽取 34 戶居民進(jìn)行調(diào)查,則應(yīng)從用電量在[3200,3250)的居民中抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表數(shù)據(jù)為某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)及對(duì)應(yīng)銷(xiāo)售價(jià)格(單位:千元/噸).
1 | 2 | 3 | 4 | 5 | |
70 | 65 | 55 | 38 | 22 |
(1)若與有較強(qiáng)的線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)若該農(nóng)產(chǎn)品每噸的成本為13.1千元,假設(shè)該農(nóng)產(chǎn)品可全部賣(mài)出,利用上問(wèn)所求的回歸方程,預(yù)測(cè)當(dāng)年產(chǎn)量為多少?lài)崟r(shí),年利潤(rùn)最大?
(參考公式:回歸直線方程為,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù), 為直線的傾斜角,且),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)若直線經(jīng)過(guò)圓的圓心,求直線的傾斜角;
(2)若直線與圓交于, 兩點(diǎn),且,點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com