已知A={x|x2+3x+2≥0},B={x|mx2-4x+m-1>0,m∈R},若A∩B=φ,且A∪B=A,求m的取值范圍.

解:由已知A={x|x2+3x+2≥0}得A={x|x≤-2}或x≥-1由A∩B=φ得.
(1)∵A非空,∴B=φ;
(2)∵A={x|x≤-2或x≥-1}∴B={x|-2<x<-1}.
另一方面,A∪B=AB⊆A,于是上面(2)不成立,
否則A∪B=R,與題設(shè)A∪B=A矛盾.
由上面分析知,B=φ.由已知B={x|mx2-4x+m-1>0},m∈R結(jié)合B=φ,
得對(duì)一切x∈R,mx2-4x+m-1≤0恒成立,
于是,有
∴m的取值范圍是
分析:先化簡(jiǎn)集合A={x|x2+3x+2≥0}為A={x|x≤-2或x≥-1},再由A∩B=φ得出集合B=φ或B={x|-2<x<-1}.再由A∪B=A,得B⊆A,從而有對(duì)一切x∈R,mx2-4x+m-1≤0恒成立,再由判別式求解.
點(diǎn)評(píng):本題主要考查集合的關(guān)系及運(yùn)算和用判別式法解決不等式恒成立問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2+(P+2)x+4=0},M={x|x>0},若A∩M=∅,則實(shí)數(shù)P的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|
x2-x-2x2+1
>0
},B={x|4x+p<0},且A?B,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2-2x-3<0},B={x|x<a},若A⊆B,則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2≥4},B={x|
6-x1+x
≥0},C={x||x-3|<3}
,若U=R,
(1)求(CUB)∪(CUC),
(2)求A∩CU(B∩C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2+6x+8≤0},B={x|kx2+(2k-4)x+k-4>0,x∈R},若A∪B=B,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案