1.(1)已知sinα=$\frac{12}{13}$,α∈($\frac{π}{2}$,π),求sin2α;
(2)已知tanα=$\frac{1}{2}$,求tan2α的值.

分析 (1)由條件利用同角三角函數(shù)的基本關系求得cosα的值,再利用二倍角公式,求得 sin2α 的值.
(2)由條件利用二倍角的正切公式求得tan2α的值.

解答 解:(1)∵已知sinα=$\frac{12}{13}$,α∈($\frac{π}{2}$,π),∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{5}{13}$,
∴sin2α=2sinαcosα=-$\frac{120}{169}$.
(2)∵已知tanα=$\frac{1}{2}$,∴tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=$\frac{1}{1-\frac{1}{4}}$=$\frac{4}{3}$.

點評 本題主要考查同角三角函數(shù)的基本關系,二倍角公式,以及三角函數(shù)在各個象限中的符號,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,滿足$\overrightarrow a$•$\overrightarrow a$=$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{2}$$\overrightarrow a$•$\overline c$=$\overrightarrow b$•$\overrightarrow c$=1,則|$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$|的最小值為(  )
A.2B.4C.$\sqrt{14}$D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.為了計算2×4×6×8×10的值,小明同學設計了一個正確的算法,流程圖如圖所示,只是判斷框(菱形框)中的內(nèi)容看不清了,那么判斷框中的內(nèi)容可以是I≤10或I<11或I≤11或I<12或I<10.5,等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若在定義域R上遞增的一次函數(shù)f(x)滿足f[f(x)]=4x+3,則f(x)=2x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,A=120°,AB=4,若點D在邊BC上,且BD=2DC,AD=$\frac{{2\sqrt{7}}}{3}$,則AC的長為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知圓C1:(x-2)2+(y-1)2=4與圓C2:x2+(y-2)2=9相交,則交點連成的直線的方程為x+2y-1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知二面角內(nèi)α-l-β內(nèi)一點P到二面角的兩個面α,β的距離分別為PA,PB,且PA=PB=AB=2,則二面角的度數(shù)是120°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.將函數(shù)y=$\frac{1}{2}$cos4x+$\frac{\sqrt{3}}{2}$sin4x化成余弦型函數(shù)的形式,并求出該函數(shù)的最小正周期、最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.①某座大橋一天經(jīng)過的中華牌轎車的輛數(shù)為X;
②某網(wǎng)站中歌曲《愛我中華》一天內(nèi)被點擊的次數(shù)為X;
③射手對目標進行射擊,擊中目標得1分,未擊中目標得0分,用X表示該射手在一次射擊中的得分.
上述問題中的X是離散型隨機變量的是(  )
A.①②③B.①②C.①③D.②③

查看答案和解析>>

同步練習冊答案