6.執(zhí)行如圖所示的程序框圖,輸出的A值為(  )
A.7B.15C.31D.63

分析 模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的A,i的值,可得當(dāng)i=7時(shí)滿足條件i>6,退出循環(huán),輸出A的值為63.

解答 解:模擬程序的運(yùn)行,可得
A=0,i=1
A=1,i=2
不滿足條件i>6,執(zhí)行循環(huán)體,A=3,i=3
不滿足條件i>6,執(zhí)行循環(huán)體,A=7,i=4
不滿足條件i>6,執(zhí)行循環(huán)體,A=15,i=5
不滿足條件i>6,執(zhí)行循環(huán)體,A=31,i=6
不滿足條件i>6,執(zhí)行循環(huán)體,A=63,i=7
滿足條件i>6,退出循環(huán),輸出A的值為63.
故選:D.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,當(dāng)循環(huán)的次數(shù)不多或有規(guī)律時(shí),常采用模擬執(zhí)行程序的方法解決,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域?yàn)镽的函數(shù)f(x)=$\frac{n-g(x)}{m+2g(x)}$是奇函數(shù).
(1)確定y=g(x),y=f(x)的解析式;
(2)若h(x)=f(x)+a在(-1,1)上有零點(diǎn),求a的取值范圍;
(3)若對(duì)任意的t∈(-4,4),不等式f(6t-3)+f(t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若二次函數(shù)f(x)=x2+1的圖象與曲線C:g(x)=aex+1(a>0)存在公共切線,則實(shí)數(shù)a的取值范圍為(0,$\frac{4}{{e}^{2}}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3+a4+a5+a6+a7=20,則S9=( 。
A.18B.36C.60D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.《九章算術(shù)》是我國(guó)古代一部重要的數(shù)學(xué)著作,書中給出了如下問題:“今有良馬與駑馬發(fā)長(zhǎng)安,至齊,齊去長(zhǎng)安一千一百二十五里.良馬初日行一百零三里,日增一十三里.駑馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬,問幾何日相逢?”其大意為:“現(xiàn)有良馬和駑馬同時(shí)從長(zhǎng)安出發(fā)到齊去,已知長(zhǎng)安和齊的距離是1125里.良馬第一天行103里,之后每天比前一天多行13里.駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇?”在這個(gè)問題中兩馬從出發(fā)到相遇的天數(shù)為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合Sn={1,2,3,…2n-1},若X是Sn的子集,把X的所有元素的乘積叫做X的容量(規(guī)定空集的容量為0),若X的容量為奇(偶)數(shù),則稱X為Sn的奇(偶)子集.其中Sn的奇子集的個(gè)數(shù)為(  )
A.$\frac{{{n^2}+n}}{2}$B.2n-1C.2nD.22n-1-2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,輸出的s值為( 。
A.0B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)0<x<$\frac{π}{2}$,記a=sinx,b=esinx,c=lnsinx,則a,b,c的大小關(guān)系為(  )
A.a<b<cB.b<a<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知下列四個(gè)命題:p1:若f(x)=2x-2-x,則?x∈R,f(-x)=-f(x);p2:若函數(shù)$f(x)=\left\{\begin{array}{l}a{x^2}+1,x≥0\\({a+2}){e^{ax}},x<0\end{array}\right.$為R上的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(0,+∞);p3:若函數(shù)f(x)=xlnx-ax2有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是$({0,\frac{1}{2}})$;p4:已知函數(shù)f(x)的定義域?yàn)镽,f(x)滿足$f(x)=\left\{\begin{array}{l}{x^2}+2,x∈[{0,1})\\ 2-{x^2},x∈[{-1,0})\end{array}\right.$且f(x)=f(x+2),$g(x)=\frac{2x+5}{x+2}$,則方程f(x)=g(x)在區(qū)間[-5,1]上所有實(shí)根之和為-7.其中真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案