已知二次函數(shù)f(x)同時滿足下列條件:
(1)f(x+1)=f(1-x),
(2)f(x)的最大值15,
(3)f(x)=0的兩根立方和等于17,求f(x)的解析式.
分析:由(1)可知函數(shù)f(x)關(guān)于x=1對稱,可設(shè)f(x)=a(x-1)2+b根據(jù)(2)有最大值15,和f(x)=0的兩根立方和等于17,由此即可求出f(x)的解析式.
解答:解:∵二次函數(shù)f(x)滿足f(x+1)=f(1-x),函數(shù)關(guān)于x=1對稱,
可設(shè)f(x)=a(x-1)2+b,
∵f(x)的最大值15,
∴x=1時,b=15,且開口向下,
a<0,∴y=a(x-1)2+b=ax2-2ax+a+15,
設(shè)方程兩個根為x1,x2,
可得x1+x2=2,x1,×x2=
a+15
a
,
∵x13+x23=17,
∴(x1+x23=x13+x23+3x1•x2(x1+x2),
∴23=17+3×2×
15+a
a
,解得a=-6,
∴y=-6(x-1)2+15;
點評:此題主要考查二次函數(shù)的圖象及其性質(zhì),還有其解析式的求法,是一道基礎(chǔ)題,考查的知識點比較全面;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過原點,且滿足f(2)=0,求實數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經(jīng)過原點,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案