【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),),在以坐標原點為極點,軸非負軸為極軸的極坐標系中,曲線(為極角).

(1)將曲線化為極坐標方程,當時,將化為直角坐標方程;

(2)若曲線相交于一點,求點的直角坐標使到定點的距離最小.

【答案】(1) , (2)

【解析】試題分析:(1)利用平方關系消參得到曲線的普通方程進而化為極坐標方程,由化簡得,即可得到化為直角坐標方程;

(2)當點到定點的距離最小時,的延長線過(1,0),此時所在直線的傾斜角為數(shù)形結合可得結果.

試題解析:

(Ⅰ)由的參數(shù)方程得,化簡得,

,

化簡得,

(Ⅱ)當點到定點的距離最小時,的延長線過(1,0),

此時所在直線的傾斜角為,

由數(shù)形結合可知,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中,為正三角形,點在棱上,且,點,分別為棱的中點.

(1)證明:平面;

(2)若,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上.

(1)求橢圓的方程;

(2)經過橢圓的右焦點的直線與橢圓交于兩點,、分別為橢圓的左、右頂點,記的面積分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系.

(1)求曲線的普通方程,并說明其表示什么軌跡;

(2)若直線的極坐標方程為,試判斷直線與曲線的位置關系,若相交,請求出其弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】二進制規(guī)定:每個二進制數(shù)由若干個0、1組成,且最高位數(shù)字必須為1.若在二進制中,是所有位二進制數(shù)構成的集合,對于,,表示對應位置上數(shù)字不同的位置個數(shù).例如當,當.

(1)令,求所有滿足,且的個數(shù);

(2)給定,對于集合中的所有,求的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

)設,討論函數(shù)的單調性.

)設,求證:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與橢圓相交于兩點,與軸, 軸分別相交于點和點,且,點是點關于軸的對稱點, 的延長線交橢圓于點,過點分別做軸的垂線,垂足分別為.

(1)橢圓的左、右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上,求橢圓的方程;

(2)當時,若點平分線段,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左焦點為,上頂點為,長軸長為,為直線上的動點,.當時,重合.

(1)若橢圓的方程;

(2)若直線交橢圓,兩點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱的所有棱長均,為棱(不包括端點)上一動點,的中點.

(Ⅰ)若,求的長;

(Ⅱ)當在棱(不包括端點)上運動時,求平面與平面的夾角的余弦值的取值范圍.

查看答案和解析>>

同步練習冊答案