【題目】如圖所示,曲線C由部分橢圓C1:+=1(a>b>0,y≥0)和部分拋物線C2:y=-x2+1(y≤0)連接而成,C1與C2的公共點為A,B,其中C1所在橢圓的離心率為.
(1)求a,b的值;
(2)過點B的直線l與C1,C2分別交于點P,Q(P,Q,A,B中任意兩點均不重合),若AP⊥AQ,求直線l
的方程.
【答案】(1),;(2).
【解析】
試題(1)結(jié)合圖形在中,令,得,再聯(lián)立, 可得,,;(2)由題易得點,,由題知直線與軸不重合也不垂直,可設(shè)其方程為(),聯(lián)立的方程,整理得,解得點的坐標(biāo)為,結(jié)合圖形知,再將代入的方程,得點的坐標(biāo)為,再由,即得,求得方程.
試題解析:(1)在C2的方程中令y=0可得b=1,由=及a2-c2=b2=1得a=,∴a=,b=1.
(2)由(1)知,上半橢圓C1的方程為y2+2x2=2(y≥0).易知,直線l與x軸不重合也不垂直,
設(shè)其方程為x=my+1 (m≠0),并將其代入C1的方程,
整理得(2m2+1)+4my=0,故可解得點P的坐標(biāo)為,顯然,m<0,
同理,將x=my+1 (m≠0)代入C2的方程,整理得m2y2+y+2my=0,得點Q的坐標(biāo)為.
∵AP⊥AQ,∴=0,
即8m2 +2m=0,解得m=-,符合m<0,故直線l的方程為4x+y-4=0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線, .
(1)求證:對,直線與圓總有兩個不同的交點;
(2)求弦的中點的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實數(shù),使得原上有四點到直線的距離為?若存在,求出的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:在五面體ABCDEF中,四邊形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.
(Ⅰ)求證:平面ABCD⊥平面EDCF;
(Ⅱ)求三棱錐A-BDF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠C=,,M,N分別是BC,AB的中點,將△BMN沿直線MN折起,使二面角B'-MN-B的大小為,則B'N與平面ABC所成角的正切值是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點F,直線y=4與y軸的交點為P,與拋物線C的交點為Q,且|QF|=2|PQ|.
(1)求p的值;
(2)已知點T(t,-2)為C上一點,M,N是C上異于點T的兩點,且滿足直線TM和直線TN的斜率之和為,證明直線MN恒過定點,并求出定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以為極點,軸為正半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為 ,直線與曲線相交于兩點,直線過定點且傾斜角為交曲線于兩點.
(1)把曲線化成直角坐標(biāo)方程,并求的值;
(2)若成等比數(shù)列,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)點,,(其中表示a、b中的較大數(shù))為、兩點的“切比雪夫距離”.
(1)若,Q為直線上動點,求P、Q兩點“切比雪夫距離”的最小值;
(2)定點,動點滿足,請求出P點所在的曲線所圍成圖形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com