已知函數(shù),其中a>0.
(1)若f(x)在x=1處取得極值,求a的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)若f(x)的最小值為1,求a的取值范圍.
【答案】分析:(1)對函數(shù)求導,令f′(1)=0,即可解出a值.
(2)f′(x)>0,對a的取值范圍進行討論,分類解出單調(diào)區(qū)間.a(chǎn)≥2時,在區(qū)間(0,+∞)上是增函數(shù),
(3)由(2)的結(jié)論根據(jù)單調(diào)性確定出最小值,當a≥2時,由(II)知,f(x)的最小值為f(0)=1,恒成立;當0<a<2時,判斷知最小值小于1,此時a無解.當0<a<2時,(x)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為
解答:解:(1)
∵f′(x)在x=1處取得極值,f′(1)=0
  即 a+a-2=0,解得  a=1
(2)
∵x≥0,a>0,
∴ax+1>0
①當a≥2時,在區(qū)間(0,+∞)上f′(x)>0.
∴f(x)的單調(diào)增區(qū)間為(0,+∞)
②當0<a<2時,由f′(x)>0解得

∴f(x)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為
(3)當a≥2時,由(II)知,f(x)的最小值為f(0)=1
當0<a<2時,由(II)②知,處取得最小值,
綜上可知,若f(x)的最小值為1,則a的取值范圍是[2,+∞)
點評:考查導數(shù)法求單調(diào)區(qū)間與求最值,本類題型是導數(shù)的主要運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)(其中A>0,)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為.

(Ⅰ)求的解析式;

(Ⅱ)當,求的值域;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)已知函數(shù)(其中A>0,)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為.(Ⅰ)求的解析式;(Ⅱ)當,求的值域;

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省濟寧市汶上一中高二(下)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)若a=2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[2,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年重慶七中高三(下)3月月考數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(1)、若x=1是y=f(x)的一個極值點,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)、若曲線y=f(x)與x軸有3個不同交點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省武漢市武昌區(qū)高一(下)期末數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),其中a>0且a≠1.
(1)求f(x)的解析式;
(2)判斷并證明f(x)的單調(diào)性;
(3)當x∈(-∞,2)時,f(x)-4的值恒為負數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案