為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關(guān)系:(,為常數(shù)),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時,總費(fèi)用達(dá)到最。坎⑶笞钚≈担

(1);(2)即隔熱層修建厚時,總費(fèi)用達(dá)到最小,最小值為70萬元.

解析試題分析:(1)由建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系: (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.我們可得C(0)=8,得k=40,進(jìn)而得到C(x)=.建造費(fèi)用為C1(x)=6x,則根據(jù)隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和為f(x),我們不難得到f(x)的表達(dá)式.
(2)由(1)中所求的f(x)的表達(dá)式,我們利用導(dǎo)數(shù)法,求出函數(shù)f(x)的單調(diào)性,然后根據(jù)函數(shù)單調(diào)性易求出總費(fèi)用f(x)的最小值.
(1)當(dāng)時,,         2分
         5分
(2),             7分
設(shè),
當(dāng)且僅當(dāng)這時,因此的最小值為70.
即隔熱層修建厚時,總費(fèi)用達(dá)到最小,最小值為70萬元.    10分
考點(diǎn):函數(shù)模型的選擇與應(yīng)用;函數(shù)最值的應(yīng)用;利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某房地產(chǎn)開發(fā)公司計劃在一樓區(qū)內(nèi)建造一個長方形公園ABCD,公園由形狀為長方形A1B1C1D1的休閑區(qū)和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米(如圖所示).

(1)若設(shè)休閑區(qū)的長和寬的比=x(x>1),求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;
(2)要使公園所占面積最小,則休閑區(qū)A1B1C1D1的長和寬該如何設(shè)計?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知焦點(diǎn)在y軸,頂點(diǎn)在原點(diǎn)的拋物線C1經(jīng)過點(diǎn)P(2,2),以C1上一點(diǎn)C2為圓心的圓過定點(diǎn)A(0,1),記為圓軸的兩個交點(diǎn).
(1)求拋物線的方程;
(2)當(dāng)圓心在拋物線上運(yùn)動時,試判斷是否為一定值?請證明你的結(jié)論;
(3)當(dāng)圓心在拋物線上運(yùn)動時,記,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正數(shù)a、b、c滿足abc=1,求證:(a+2)(b+2)(c+2)≥27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,某小區(qū)擬在空地上建一個占地面積為2400平方米的矩形休閑廣場,按照設(shè)計要求,休閑廣場中間有兩個完全相同的矩形綠化區(qū)域,周邊及綠化區(qū)域之間是道路(圖中陰影部分),道路的寬度均為2米.怎樣設(shè)計矩形休閑廣場的長和寬,才能使綠化區(qū)域的總面積最大?并求出其最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某商品進(jìn)貨價每件50元,據(jù)市場調(diào)查,當(dāng)銷售價格(每件x元)為50<x≤80時,每
天售出的件數(shù)為,若要使每天獲得的利潤最多,銷售價格每件應(yīng)定為多少元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

用一根長為100米的繩子圍出一塊矩形場地,則可圍成場地的
最大面積是     (單位:平方米)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知的最小值是_______。

查看答案和解析>>

同步練習(xí)冊答案