14.已知數(shù)列{an}(n∈N*),a2=-9.
(1)若數(shù)列{an}是等比數(shù)列,且a5=-$\frac{1}{3}$,求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}是等差數(shù)列,且a6=-1,數(shù)列{bn}滿足bn=2${\;}^{{a}_{n}}$,當(dāng)b1b2…bm=1(m∈N*)時(shí),求m的值.

分析 (1)數(shù)列{an}是公比為q的等比數(shù)列,由等比數(shù)列的通項(xiàng)公式解方程可得首項(xiàng)和公比,即可得到所求通項(xiàng);
(2)數(shù)列{an}是公差為d的等差數(shù)列,由等差數(shù)列的通項(xiàng)公式解方程可得首項(xiàng)和公差,可得數(shù)列{an}的通項(xiàng),進(jìn)而得到bn=2${\;}^{{a}_{n}}$=22n-13,再由指數(shù)的運(yùn)算性質(zhì)和等差數(shù)列的求和公式,計(jì)算即可得到所求值.

解答 解:(1)數(shù)列{an}是公比為q的等比數(shù)列,
a2=-9,a5=-$\frac{1}{3}$,可得a1q=-9,a1q4=-$\frac{1}{3}$,
解得q=$\frac{1}{3}$,a1=-27,
可得an=a1qn-1=-($\frac{1}{3}$)n-4,(n∈N*);
(2)數(shù)列{an}是公差為d的等差數(shù)列,
a2=-9,a6=-1,可得a1+d=-9,a1+5d=-1,
解得a1=-11,d=2,
則an=a1+(n-1)d=2n-13,
bn=2${\;}^{{a}_{n}}$=22n-13
b1b2…bm=1,可得2${\;}^{\frac{1}{2}m(2m-24)}$=1,
可得m(m-12)=0,
解得m=12(0舍去).

點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查方程思想和運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)滿足f(1+x)=f(1-x),且x≥1時(shí),f(x)=xlnx,若不等式f(ex+1)≥f(ax+1)對(duì)任意x∈[0,3]恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[-e,e]B.[-$\frac{{e}^{3}}{3}$,$\frac{{e}^{3}}{3}$]C.[-e,$\frac{{e}^{3}}{3}$]D.(-∞,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知$\overrightarrow{m}$=(2sinx,$\sqrt{3}$cos2x),$\overrightarrow{n}$=(cosx,2),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\sqrt{3}$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,其中a=7,若銳角A滿足f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且sinB+sinC=$\frac{13\sqrt{3}}{14}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+co{s^2}x+1$.
(1)求f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若f(C)=2,a+b=4,且△ABC的面積為$\frac{{\sqrt{3}}}{3}$,求△ABC外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某廠生產(chǎn)一種供不應(yīng)求產(chǎn)品時(shí),每年需投入固定成本250萬(wàn)元,每生產(chǎn)此產(chǎn)品x千件還需另投入C(x)=51x$+\frac{10000}{x}$-1450萬(wàn)元,已知此產(chǎn)品每千件產(chǎn)品的售價(jià)為50萬(wàn)元
(1)設(shè)該產(chǎn)品的年利潤(rùn)為L(zhǎng)(x)(萬(wàn)元),求年利潤(rùn)L(x)的函數(shù)式
(2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一產(chǎn)品的生產(chǎn)銷售中所獲年利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知p:指數(shù)函數(shù)f(x)=(2a-6)x在R上是單調(diào)減函數(shù);q:關(guān)于x的方程x2-3ax+2a2+1=0的兩根均大于3,若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若函數(shù)f(x)=(x-2)(ax+b)為偶函數(shù),且在(0,+∞)上單調(diào)遞增,則f(2-x)>0的解集為(  )
A.{x|x>4或x<0}B.{x|-2<x<2}C.{x|x>2或x<-2}D.{x|0<x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知二次函數(shù)f(x)=ax2+4x+c的最小值為-1,且對(duì)任意x都有f(-2+x)=f(-x)
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=f(-x)-λf(x)+1,λ<1,若g(x)在[-2,2]上是減函數(shù),求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.集合A={0,1}的真子集的個(gè)數(shù)為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案