(14分)如圖①,直角梯形中,,點(diǎn)分別在上,且,現(xiàn)將梯形A沿折起,使平面與平面垂直(如圖②).
(1)求證:平面;
(2)當(dāng)時,求二面角的大。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(20) (本題滿分14分) 已知正四棱錐P-ABCD中,底面是邊長為2 的正方形,高為.M為線段PC的中點(diǎn).
(Ⅰ) 求證:PA∥平面MDB;
(Ⅱ) N為AP的中點(diǎn),求CN與平面MBD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,為空間四點(diǎn).在中,.等邊三角形以為軸運(yùn)動.
(1)當(dāng)平面平面時,求;
(2)當(dāng)轉(zhuǎn)動時,證明總有?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)如圖,在矩形ABCD中,AB=2BC,點(diǎn)M在邊CD上,點(diǎn)F在邊AB上,且,垂足為E,若將沿AM折起,使點(diǎn)D位于位置,連接,得四棱錐.
(1)求證:;(2)若,直線與平面ABCM所成角的大小為,求直線與平面ABCM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,直棱柱中,底面是直角梯形,,.
(1)求證:平面;
(2)在A1B1上是否存一點(diǎn),使得與平面平行?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)如圖,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一點(diǎn)P在平面ABC內(nèi)的射影是AB中點(diǎn)M,二面角P—AC—B的大小為45°.
(I)求二面角P—BC—A的正切值;
(II)求二面角C—PB—A的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com