分析 (1)去絕對(duì)值符號(hào)得出f(x)的分段解析式,再各段上解不等式即可;
(2)對(duì)x的范圍進(jìn)行討論,分離參數(shù)得出a在各段上的最小值,即可得出a的范圍.
解答 解:(1)f(x)=$\left\{\begin{array}{l}{-x+4,x≥1}\\{3x,-2<x<1}\\{x-4,x≤-2}\end{array}\right.$.
∵f(x)≥-2,
∴$\left\{\begin{array}{l}{-x+4≥-2}\\{x≥1}\end{array}\right.$或$\left\{\begin{array}{l}{3x≥-2}\\{-2<x<1}\end{array}\right.$或$\left\{\begin{array}{l}{x-4≥-2}\\{x≤-2}\end{array}\right.$,
解得1≤x≤6或-$\frac{2}{3}$≤x<1.
∴不等式f(x)≥-2的解為集為{x|-$\frac{2}{3}$≤x≤6}.
(2)當(dāng)x≥1時(shí),-x+4≤x-a,即a≤2x-4恒成立,∴a≤-2;
當(dāng)-2<x<1時(shí),3x≤x-a,即a≤-2x恒成立,∴a≤-2;
當(dāng)x≤-2時(shí),x-4≤x-a,即a≤4恒成立.
∵任意x∈R,都有f(x)≤x-a成立,
∴a≤-2.
點(diǎn)評(píng) 本題考查了絕對(duì)值不等式的解法,分類討論思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,0) | B. | (0,1) | C. | $({\frac{1}{2},-\frac{1}{2}})$ | D. | $({-\frac{1}{2},-\frac{1}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥1 | B. | a>1 | C. | a≤1 | D. | a<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com