【題目】如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,PO垂直于圓O所在的平面,且PO=OB=1.

(1)若D為線段AC的中點,求證:AC⊥平面PDO;

(2)求三棱錐P-ABC體積的最大值;

(3)若,點E在線段PB上,求CE+OE的最小值.

【答案】(1)見解析;(2);(3)

【解析】

1)證明AC⊥DO,PO⊥AC,再證明AC⊥平面PDO;(2)當CO⊥AB時,C到AB的距離最大,且最大值為1,再求三棱錐P-ABC體積的最大值;(3)先證明PB=PC=BC,在三棱錐P-ABC中,將側(cè)面BCP繞PB旋轉(zhuǎn)至平面BC′P,使之與平面ABP共面,當O,E,C′共線時,CE+OE取得最小值.再求其最小值.

(1)證明:在△AOC中,因為OA=OC,D為AC的中點,所以AC⊥DO.

又PO垂直于圓O所在的平面,所以PO⊥AC.

因為DO∩PO=O,所以AC⊥平面PDO.

(2)解:因為點C在圓O上,所以當CO⊥AB時,C到AB的距離最大,且最大值為1.

又AB=2,所以△ABC面積的最大值為.

又因為三棱錐P-ABC的高PO=1,

故三棱錐P-ABC體積的最大值為.

(3)解:

在△POB中,PO=OB=1,∠POB=90°,

所以.

同理,所以PB=PC=BC.

在三棱錐P-ABC中,將側(cè)面BCP繞PB旋轉(zhuǎn)至平面BC′P,使之與平面ABP共面,如圖所示.

當O,E,C′共線時,CE+OE取得最小值.

又因為OP=OB,,所以垂直平分PB,即E為PB的中點.

從而

即CE+OE的最小值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知=12sin(x+)cosx-3,x∈[o,].

(1)求的最大值、最小值;

(Ⅱ)CD為△ABC的內(nèi)角平分線,已知AC=max,BC=,CD=2,求∠C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年央視大型文化節(jié)目《經(jīng)典詠流傳》的熱播,在全民中掀起了誦讀詩詞的熱潮.某大學社團調(diào)查了該校文學院300名學生每天誦讀詩詞的時間(所有學生誦讀時間都在兩小時內(nèi)),并按時間(單位:分鐘)將學生分成六個組:,,,,,,經(jīng)統(tǒng)計得到了如圖所

示的頻率分布直方圖

(Ⅰ)求頻率分布直方圖中的值,并估計該校文學院的學生每天誦讀詩詞的時間的平均數(shù);

(Ⅱ)若兩個同學誦讀詩詞的時間滿足,則這兩個同學組成一個“Team”,已知從每天誦讀時間小于20分鐘和大于或等于80分鐘的所有學生中用分層抽樣的方法抽取了5人,現(xiàn)從這5人中隨機選取2人,求選取的兩人能組成一個“Team”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題中,真命題的序號有__________.(寫出所有真命題的序號)①若,則“”是“”成立的充分不必要條件;②命題“使得”的否定是 “均有”;③命題“若,則”的否命題是“若,則”;④函數(shù)在區(qū)間上有且僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,嫦娥一號探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點變軌進入以月球球心為一個焦點的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在點第二次變軌進入仍以為一個焦點的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在點第三次變軌進入以為圓心的圓形軌道Ⅲ繞月飛行.已知橢圓軌道Ⅰ和Ⅱ的中心與在同一直線上,設橢圓軌道Ⅰ和Ⅱ的長半軸長分別為,,半焦距分別為,,則以下四個關(guān)系①,②,③,④中正確的是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】棱長為2的正方體在平面上的射影的面積最大值等于________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有除顏色外完全相同的黑球和白球共7個,其中白球3個,現(xiàn)有甲、乙兩人從袋中輪流摸球,甲先取,乙后取,然后甲再取,,取后不放回,直到兩人中有一人取到白球時終止.每個球在每一次被取出的機會是等可能的.

1)求取球2次即終止的概率;

2)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)設,若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,平面平面,△ABC為等腰三角形,的中點,的中點,且,

(Ⅰ)證明:平面

(Ⅱ)若,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案