已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知拋物線方程為y2=4x,其焦點(diǎn)為F,準(zhǔn)線為l,A點(diǎn)為拋物線上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),射線HAE垂直于準(zhǔn)線l,垂足為H,C點(diǎn)在x軸正半軸上,且四邊形AHFC是平行四邊形,線段AF和AC的延長(zhǎng)線分別交拋物線于點(diǎn)B和點(diǎn)D.
(1)證明:∠BAD=∠EAD;
(2)求△ABD面積的最小值,并寫(xiě)出此時(shí)A點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)y在軸上,焦距為,且過(guò)點(diǎn)M。
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)的直線l交橢圓C于A、B兩點(diǎn),且N恰好為AB中點(diǎn),能否在橢圓C上找到點(diǎn)D,使△ABD的面積最大?若能,求出點(diǎn)D的坐標(biāo);若不能,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓的離心率是,分別是橢圓的左、右兩個(gè)頂點(diǎn),點(diǎn)是橢圓的右焦點(diǎn)。點(diǎn)是軸上位于右側(cè)的一點(diǎn),且滿(mǎn)足.
(1)求橢圓的方程以及點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)作軸的垂線,再作直線與橢圓有且僅有一個(gè)公共點(diǎn),直線交直線于點(diǎn).求證:以線段為直徑的圓恒過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓C:+y2=1,A、B是四條直線x=±2,y=±1所圍成的兩個(gè)頂點(diǎn).
(1)設(shè)P是橢圓C上任意一點(diǎn),若=m+n,求證:動(dòng)點(diǎn)Q(m,n)在定圓上運(yùn)動(dòng),并求出定圓的方程;
(2)若M、N是橢圓C上兩上動(dòng)點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)為F(0,1).
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)F作直線交拋物線C于A,B兩點(diǎn).若直線AO、BO分別交直線l:y=x-2于M、N兩點(diǎn),求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為,它的一個(gè)頂點(diǎn)為拋物線x2=4y的焦點(diǎn).
(1)求橢圓方程;
(2)若直線y=x-1與拋物線相切于點(diǎn)A,求以A為圓心且與拋物線的準(zhǔn)線相切的圓的方程;
(3)若斜率為1的直線交橢圓于M、N兩點(diǎn),求△OMN面積的最大值(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是橢圓的左、右頂點(diǎn),橢圓的離心率為,右準(zhǔn)線的方程為.
(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點(diǎn),直線交于點(diǎn),以為直徑的圓記為. ①若恰好是橢圓的上頂點(diǎn),求截直線所得的弦長(zhǎng);
②設(shè)與直線交于點(diǎn),試證明:直線與軸的交點(diǎn)為定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)F1,F2分別是橢圓E:x2+=1(0<b<1)的左、右焦點(diǎn),過(guò)F1的直線l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com