分析 依題意,tan∠Q=$\frac{-1}{x}$=-x⇒x=±1;再分x=1與x=-1兩種情況討論,即可求得sin∠Q+cos∠Q的值.
解答 解:∵tan∠Q=$\frac{-1}{x}$=-x(x≠0),
∴x2=1,x=±1;
當x=1時,sin∠Q=-$\frac{\sqrt{2}}{2}$,cos∠Q=$\frac{\sqrt{2}}{2}$,sin∠Q+cos∠Q=0;
當x=-1時,sinθ=-$\frac{\sqrt{2}}{2}$,cos∠Q=-$\frac{\sqrt{2}}{2}$,sin∠Q+cos∠Q=-$\sqrt{2}$.
點評 本題考查同角三角函數(shù)的定義及基本關(guān)系的運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{1}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=1 | B. | 2x+y-1=0 | ||
C. | y=1或2x+y-1=0 | D. | 2x+y-1=0或2x+y+1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{{\sqrt{10}}}{4}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(4.5)<f(6.5)<f(7) | B. | f(4.5)<f(7)<f(6.5) | C. | f(7)<f(6.5)<f(4.5) | D. | f(7)<f(4.5)<f(6.5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
X | -1 | 0 | 1 |
P | $\frac{1}{2}$ | 1-q | q2-q |
A. | 1 | B. | 1±$\frac{{\sqrt{2}}}{2}$ | C. | 1-$\frac{{\sqrt{2}}}{2}$ | D. | 1+$\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com