已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程:ρ=2cosθ.
(Ⅰ)將直線l的參數(shù)方程化為普通方程,曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)判斷直線l和曲線C的位置關(guān)系.
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:(Ⅰ)消去此時t即可將直線l的參數(shù)方程化為普通方程,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)利用(Ⅰ)通過圓心到直線的距離與半徑比較,即可判斷直線l和曲線C的位置關(guān)系.
解答: 解:(Ⅰ)直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù)),消去參數(shù)t,可得直線為y=2x+1;
曲線C的極坐標(biāo)方程:ρ=2cosθ,即ρ2=2ρcosθ,ρcosθ=x,ρsinθ=y,ρ2=x2+y2,
∴曲線C為:x2+y2=2x,(4分)
(Ⅱ)x2+y2=2x,圓C的圓心(1,0)半徑1,
則圓心到直線距離d=
3
5
>1   
直線l和曲線C的位置關(guān)系相離 (5分)
點(diǎn)評:本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:圓C過點(diǎn)A(6,0),B(1,5)且圓心在直線l:2x-7y+8=0上,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n+1-2,數(shù)列{bn}滿足bn=
1
(n+1)log2an

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是實(shí)數(shù),函數(shù)f(x)=3x2+a,g(x)=2x+b,若f(x)•g(x)≥0在區(qū)間I上恒成立,則稱f(x)和g(x)在區(qū)間I上為“Ω函數(shù)”.
(Ⅰ)設(shè)a>0,若f(x)和g(x)在區(qū)間[-1,+∞)上為“Ω函數(shù)”,求實(shí)數(shù)b的取值范圍;
(Ⅱ)設(shè)a<0且a≠b,若f(x)和g(x)在以a,b為端點(diǎn)的開區(qū)間上為“Ω函數(shù)”,求|a-b|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
3x2+7x-4
x2-3
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-1
lnx

(Ⅰ)求證:當(dāng)x>1時,f(x)>1;
(Ⅱ)令an+1=f(an),a1=
e
,求證:2nlnan≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知B,C是兩個定點(diǎn),|BC|=10,且△ABC的周長等于22,求頂點(diǎn)A滿足的一個軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的函數(shù)f(x)的解析式:
(1)f(1+x)=3x+2;
(2)f(2x)=3x2+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐V標(biāo)方程為ρcos(θ-
π
3
)=1,M,N分別為曲線C與x軸、y軸的交點(diǎn).
(1)寫出曲線C的直角坐標(biāo)方程,并求M,N的極坐標(biāo);
(2)求直線OM的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案