已知雙曲線的焦點為,點在雙曲線上且軸,則到直線的距離為                                                  (   )
A.B.C.D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
求曲線的方程:
(1)求中心在原點,左焦點為,且右頂點為的橢圓方程;
(2)求中心在原點,一個頂點坐標(biāo)為,焦距為10的雙曲線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
已知曲線,若按向量作平移變換得曲線;若將曲線按伸縮系數(shù)向著軸作伸縮變換,再按伸縮系數(shù)3向著軸作伸縮變換得到曲線
(1)求曲線方程;
(2)若上一點,上任意一點,且與曲線相切(為切點),
求線段的最大值及對應(yīng)的點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知動點)到定點的距離與到軸的距離之差為.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)若,上兩動點,且,求證:直線必過一定
點,并求出其坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓上的動點,點Q在NP上,點G在MP上,且滿足.
(I)求點G的軌跡C的方程;
(II)過點(2,0)作直線l,與曲線C交于A、B兩點,O是坐標(biāo)原點,設(shè) 是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知曲線D軸于A、B兩點,曲線C是以AB為長軸,離心率的橢圓。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)M是直線上的任一點,以M為直徑的圓交曲線DPQ兩點(為坐標(biāo)原點)。若直線PQ與橢圓C交于G,H兩點,交x軸于點E,且。試求此時弦PQ的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓與曲線無公共點,則橢圓的離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線與直線相交于,兩點,以拋物線的焦點為圓心、為半徑(為坐標(biāo)原點)作⊙,⊙分別與線段,相交于,兩點,則的值是                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果曲線處的切線互相垂直,則的值為       .

查看答案和解析>>

同步練習(xí)冊答案