科目: 來源: 題型:044
已知數(shù)列{an}滿足條件:a1=1,a2=r(r>0)且{an·an+1}是公比為q(q>0)的等比數(shù)列,設(shè)bn=a2n-1+a2n(n=1,2,…)
(Ⅰ)求出使不等式anan+1+an+1an+2>an+2an+2(n∈N*)成立的q的取值范圍;
(Ⅱ)求bn和,其中Sn=b1+b2+…+bn;
(Ⅲ)設(shè)r=219.2-1,q=,求數(shù)列{}的最大項和最小項的值.
查看答案和解析>>
科目: 來源: 題型:044
設(shè){an}是正數(shù)組成的數(shù)列,其前n項和為Sn,并且對所有自然數(shù)n,an與2的等差中項等于Sn與2的等比中項.
(Ⅰ)寫出數(shù)列{an}的前三項;
(Ⅱ)求數(shù)列{an}的通項公式(寫出推證過程);
(Ⅲ)令bn=(n∈N*),求(b1+b2+…+bn-n)
查看答案和解析>>
科目: 來源: 題型:044
設(shè){an}是由正數(shù)組成的等比數(shù)列,Sn是前n項和.
(Ⅰ)證明:<lgSn+1;
(Ⅱ)是否存在常數(shù)C>0使得=lg(Sn+1-C)成立?并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:044
設(shè)An為數(shù)列{an}的前n項和,An=(an-1)(n∈N*),數(shù)列{bn}的通項公式為bn=4n+3(n∈N).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若d∈{a1,a2,a3,…,an,…}∩{b1,b2,b3,…,bn,…},則稱d為數(shù)列{an}與{bn}的公共項,將數(shù)列{an}{bn}的公共項,按它們在原數(shù)列中的先后順序排成一個新的數(shù)列{dn},證明數(shù)列{dn}的通項公式為dn=32n+1(n∈N*);
(Ⅲ)設(shè)數(shù)列{dn}中第n項是數(shù)列{bn}中的第r項,Br為數(shù)列{bn}的前r項的和,Dn為數(shù)列{dn}的前n項和,Tn=Br+Dn,求.
查看答案和解析>>
科目: 來源: 題型:044
設(shè)數(shù)列{an}的首項a1=1,前n項和Sn滿足關(guān)系式:
3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,…)
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,bn=f()(n=2,3,4,…),求數(shù)列{bn}的通項bn;
(3)求和:b1b2-b2b3+b3b4-b4b5…+b2n-1b2n-b2nb2n+1.
查看答案和解析>>
科目: 來源: 題型:044
若An和Bn分別表示數(shù)列{an}和{bn}前n項的和,對任意正整數(shù)n,an=-,4Bn-12An=13n.
(1)求數(shù)列{bn}的通項公式;
(2)設(shè)有拋物線列C1,C2,…,Cn,…拋物線Cn(n∈N*)的對稱軸平行于y軸,頂點為(an,bn),且通過點Dn(0,n2+1),求點Dn且與拋物線Cn相切的直線斜率為kn,求極限.
(3)設(shè)集合X={x|x=2an,n∈N*},Y={y|y=4bn,n∈N*}.若等差數(shù)列{Cn}的任一項Cn∈X∩Y,C1是X∩Y中的最大數(shù),且-265<C10<-125.求{Cn}的通項公式.
查看答案和解析>>
科目: 來源: 題型:044
已知函數(shù)y=f(x)的圖象是自原點出發(fā)的一條折線.當(dāng)n≤y≤n+1(n=0,1,2,…)時,該圖象是斜率為bn的線段(其中正常數(shù)b≠1),該數(shù)列{xn}由f(xn)=n(n=1,2,…)定義.
(Ⅰ)求x1、x2和xn的表達(dá)式;
(Ⅱ)求f(x)的表達(dá)式,并寫出其定義域;
(Ⅲ)證明:y=f(x)的圖象與y=x的圖象沒有橫坐標(biāo)大于1的交點.
查看答案和解析>>
科目: 來源: 題型:044
設(shè){an}為等比數(shù)列,Tn=na1+(n-1)a2+…+2an-1+an,已知T1=1,T2=4.
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com