科目: 來源:2012高三數(shù)學一輪復習單元練習題 函數(shù)與數(shù)列(2) 題型:044
數(shù)列{an}的首項a1∈(0,1),an=,n=2,3,4,…
(1)求{an}的通項公式;
(2)設bn=an,比較bn,bn+1的大小,其中n為正整數(shù).
查看答案和解析>>
科目: 來源:2012高三數(shù)學一輪復習單元練習題 函數(shù)與數(shù)列(2) 題型:044
已知數(shù)列{an}的前n項和為Sn,滿足log2(1+Sn)=n+1,求數(shù)列的通項公式.
查看答案和解析>>
科目: 來源:2012高三數(shù)學一輪復習單元練習題 函數(shù)與數(shù)列(1) 題型:044
設函數(shù)
(1)當m=1時,曲線y=f(x)在點(1,f(1))處的切線斜率
(2)求函數(shù)的單調(diào)區(qū)間與極值;
(3)已知函數(shù)f(x)有三個互不相同的零點0,x1,x2,且x1<x2.若對任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范圍.
查看答案和解析>>
科目: 來源:2012高三數(shù)學一輪復習單元練習題 函數(shù)與數(shù)列(1) 題型:044
已知點(1,)是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點,等比數(shù)列{an}的前n項和為f(n)-c,數(shù)列{bn}(bn>0)的首項為c,且前n項和Sn滿足Sn-Sn-1=+(n≥2).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若數(shù)列{前n項和為Tn,問Tn>的最小正整數(shù)n是多少?
查看答案和解析>>
科目: 來源:2012高三數(shù)學一輪復習單元練習題 函數(shù)與數(shù)列(1) 題型:044
圍建一個面積為360 m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2 m的進出口,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設利用的舊墻的長度為x(單位:m),修建此矩形場地的總費用為y(單位:元).
(Ⅰ)將y表示為x的函數(shù):
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用y最小,并求出最小總費用.
查看答案和解析>>
科目: 來源:2012高三數(shù)學一輪復習單元練習題 函數(shù)與數(shù)列(1) 題型:044
已知數(shù)列{an}滿足,a1=1,a2=2,an+2=,n∈N*.
(1)令bn=an+1-an,證明:{bn}是等比數(shù)列;
(2)求{an}的通項公式.
查看答案和解析>>
科目: 來源:2012高三數(shù)學一輪復習單元練習題 函數(shù)與數(shù)列(1) 題型:044
設函數(shù)f(x)=.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若k>0,求不等式(x)+k(1-x)f(x)>0的解集.
查看答案和解析>>
科目: 來源:2012高三數(shù)學一輪復習單元練習題 函數(shù)與數(shù)列(1) 題型:044
設sn是等差數(shù)列{an}的前n項和,已知S3,S4的等比中項是S5;S3,S4的等差中項是1,求數(shù)列{an}的通項公式.
查看答案和解析>>
科目: 來源:2012高三數(shù)學一輪復習單元練習題 函數(shù)與不等式 題型:044
已知函數(shù)f(x)=x3+ax2+bx+c在x=1處的切線方程為y=3x+1,
(1)若函數(shù)y=f(x)在x=-2時有極值,求f(x)的表達式;
(2)在(1)條件下,若函數(shù)y=f(x)在[-2,m]上的值域為[,13],求m的取值范圍;
(3)若函數(shù)y=f(x)在區(qū)間[-2,1]上單調(diào)遞增,求b的取值范圍.
查看答案和解析>>
科目: 來源:2012高三數(shù)學一輪復習單元練習題 函數(shù)與不等式 題型:044
已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足:對任意實數(shù)x,都有f(x)≥x,且當x∈(1,3)時,有f(x)≤(1+2)2立.
(1)求f(2);
(2)若f(-2)=0,f(x)的表達式;
(3)設g(x)=f(x)-x,x∈[0,+∞),若g(x)圖上的點都位于直線y=的上方,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com