相關習題
 0  150441  150449  150455  150459  150465  150467  150471  150477  150479  150485  150491  150495  150497  150501  150507  150509  150515  150519  150521  150525  150527  150531  150533  150535  150536  150537  150539  150540  150541  150543  150545  150549  150551  150555  150557  150561  150567  150569  150575  150579  150581  150585  150591  150597  150599  150605  150609  150611  150617  150621  150627  150635  266669 

科目: 來源: 題型:解答題

.已知函數(shù),其中
(1)設函數(shù),若在區(qū)間上不是單調函數(shù),求的取值范圍.
(2)設函數(shù)是否存在,對任意給定的非零實數(shù),存在唯一的非零
實數(shù)使得成立,若存在,求的值,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分13分)設函數(shù)f(x)=x3+ax2-a2x+m(a>0).
(Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若函數(shù)f(x)在x∈[-1,1]內沒有極值點,求a的取值范圍;
(Ⅲ)若對任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分10分)為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和
外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成
本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)
滿足兩個關系:①C(x)=②若不建隔熱層,每年能源消耗費用為8萬
元。設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(Ⅰ)求k的值及f(x)的表達式; (4分)
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

(12分)已知二次函數(shù)
為常數(shù));.若直線1、2與函數(shù)的圖象以及2,y軸與函數(shù)的圖象
所圍成的封閉圖形如陰影所示. 
(1)求、b、c的值;
(2)求陰影面積S關于t的函數(shù)S(t)的解析式;
(3)若問是否存在實數(shù)m,使得的圖象與的圖象有且只有兩個不同的交點?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

( 12分)設函數(shù)
(1)寫出定義域及的解析式;
(2)設,討論函數(shù)的單調性;
(3)若對任意,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分14分)對于函數(shù),若存在,使成立,則稱的不動點。如果函數(shù)有且僅有兩個不動點、,且

(1)試求函數(shù)的單調區(qū)間;
(2)已知各項均為負的數(shù)列滿足,求證:;
(3)設為數(shù)列的前項和,求證:

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分13分)
已知二次函數(shù),直線,直線(其中,為常數(shù));.若直線12與函數(shù)的圖象以及、軸與函數(shù)的圖象所圍成的封閉圖形如圖陰影所示.
(Ⅰ)求、、的值;
(Ⅱ)求陰影面積關于的函數(shù)的解析式;
(Ⅲ)若問是否存在實數(shù),使得的圖象與的圖象有且只有兩個不同的交點?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分12分)已知函數(shù).
(1)若,求x的取值范圍;
(2)若對于∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

(本題滿分14分)已知函數(shù)).
(Ⅰ)當時,求證:函數(shù)上單調遞增;
(Ⅱ)若函數(shù)有三個零點,求t的值;
(Ⅲ)若存在x1,x2∈[﹣1,1],使得,試求a的取值范圍.
注:e為自然對數(shù)的底數(shù)。

查看答案和解析>>

科目: 來源: 題型:解答題

已知函數(shù)時,都取得極值。
(1)求的值;
(2)若,求的單調區(qū)間和極值;
(3)若對都有恒成立,求的取值范圍。

查看答案和解析>>

同步練習冊答案