相關(guān)習(xí)題
 0  152291  152299  152305  152309  152315  152317  152321  152327  152329  152335  152341  152345  152347  152351  152357  152359  152365  152369  152371  152375  152377  152381  152383  152385  152386  152387  152389  152390  152391  152393  152395  152399  152401  152405  152407  152411  152417  152419  152425  152429  152431  152435  152441  152447  152449  152455  152459  152461  152467  152471  152477  152485  266669 

科目: 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足8Sna+4an+3(n∈N*),且a1,a2a7依次是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(2)是否存在常數(shù)a>0且a≠1,使得數(shù)列{an-logabn}(n∈N*)是常數(shù)列?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

已知等比數(shù)列{an}滿足:|a2a3|=10,a1a2a3=125.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)m,使得≥1?若存在,求m的最小值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和是Sn,且Snan=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=log3,數(shù)列的前n項(xiàng)和為Tn,證明:Tn<.

查看答案和解析>>

科目: 來源: 題型:解答題

已知數(shù)列{an}和{bn}滿足:a1λan+1ann-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)對任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Snn2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目: 來源: 題型:解答題

數(shù)列的前n項(xiàng)和記為,,點(diǎn)在直線上,n∈N*.
(1)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)設(shè),是數(shù)列的前n項(xiàng)和,求的值.

查看答案和解析>>

科目: 來源: 題型:解答題

數(shù)列{an}的前n項(xiàng)和記為Sn,a1t,點(diǎn)(Sn,an+1)在直線y=2x+1上,n∈N*.
(1)當(dāng)實(shí)數(shù)t為何值時,數(shù)列{an}是等比數(shù)列?
(2)在(1)的結(jié)論下,設(shè)bn=log3an+1Tn是數(shù)列的前n項(xiàng)和, 求T2 013的值.

查看答案和解析>>

科目: 來源: 題型:解答題

在1和2之間依次插入n個正數(shù)使得這個數(shù)構(gòu)成遞增的等比數(shù)列,將這個數(shù)的乘積記作,令.
(1)求數(shù)列{}的通項(xiàng)公式;
(2)令,設(shè),求.

查看答案和解析>>

科目: 來源: 題型:解答題

在數(shù)列{an}中,a1=1,{an}的前n項(xiàng)和Sn滿足2Snan+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若存在n∈N*,使得λ,求實(shí)數(shù)λ的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,a4a1-9,a5,a3,a4成等差數(shù)列.
(1)求數(shù)列{an} 的通項(xiàng)公式;
(2)證明:對任意k∈N*,Sk+2,SkSk+1成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案