科目: 來源: 題型:填空題
(文科做)(本題滿分14分)如圖,在長方體
ABCD—A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(1)證明:D1E⊥A1D;
(2)當E為AB的中點時,求點E到面ACD1的距離;
(3)AE等于何值時,二面角D1—EC-D的大小為.
(理科做)(本題滿分14分)
如圖,在直三棱柱ABC – A1B1C1中,∠ACB = 90°,CB = 1,
CA =,AA1 =,M為側棱CC1上一點,AM⊥BA1.
(Ⅰ)求證:AM⊥平面A1BC;
(Ⅱ)求二面角B – AM – C的大;
(Ⅲ)求點C到平面ABM的距離.
查看答案和解析>>
科目: 來源: 題型:填空題
已知α,β是平面,m,n是直線. 給出下列命題:
①.若m∥n,m⊥α,則n⊥α ②.若m⊥α,,則α⊥β
③.若m⊥α,m⊥β,則α∥β ④.若m∥α,α∩β=n,則m∥n其中,真命題的編號是_ ▲ (寫出所有正確結論的編號).
查看答案和解析>>
科目: 來源: 題型:填空題
如圖,在正方體中,E,F,G,H,M分別是棱,,的中點,點N在四邊形EFGH的四邊及其內部運動,則當N只需滿足條件________時,就有;當N只需滿足條件________時,就有MN∥平面.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com