科目: 來源: 題型:解答題
已知三棱錐S—ABC的底面是正三角形,A點在側面SBC上的射影H是△SBC的垂心.
(1)求證:BC⊥SA
(2)若S在底面ABC內的射影為O,證明:O為底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱錐S—ABC的體積.
查看答案和解析>>
科目: 來源: 題型:解答題
在四棱錐中,平面ABCD,底面ABCD是菱形,,.
(1)求證:平面PAC;
(2)若,求PB與AC所成角的余弦值;
(3)若PA=,求證:平面PBC⊥平面PDC
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,S是正方形ABCD所在平面外一點,且SD⊥面ABCD ,AB=1,SB=.
(1)求證:BCSC;
(2) 設M為棱SA中點,求異面直線DM與SB所成角的大小
(3) 求面ASD與面BSC所成二面角的大小;
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且G是EF的中
點.
(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖梯形ABCD,AD∥BC,∠A=900,過點C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE
折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設線段AB的中點為,在直線DE上是否存在一點,使得∥面BCD?若存在,請指出點的位置,并證明你的結論;若不存在,請說明理由;
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
求證:(1)PC⊥BC;
(2)求點A到平面PBC的距離。
查看答案和解析>>
科目: 來源: 題型:解答題
如圖。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中點。
(I)求證:A1B∥平面AMC1;
(II)求直線CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問:在棱A1B1上是否存在點N,使AN與MC1成角60°?若存在,確定點N的位置;若不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:解答題
已知四邊形ABCD為平行四邊形,BC⊥平面ABE,AE⊥BE,BE = BC = 1,AE = ,M為線段AB的中點,N為線段DE的中點,P為線段AE的中點。
(1)求證:MN⊥EA;
(2)求四棱錐M – ADNP的體積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com