科目: 來源: 題型:解答題
如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,點(diǎn)M在線段EC上且不與E、C垂合.
(1)當(dāng)點(diǎn)M是EC中點(diǎn)時,求證:BM//平面ADEF;
(2)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為時,求三棱錐M—BDE的體積.
查看答案和解析>>
科目: 來源: 題型:解答題
已知在長方體中,點(diǎn)為棱上任意一點(diǎn),,.
(Ⅰ)求證:平面平面;
(Ⅱ)若點(diǎn)為棱的中點(diǎn),點(diǎn)為棱的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥平面ABCD,SD=AD=2,請建立空間直角坐標(biāo)系解決下列問題.
(1)求證:;(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=.
(1)求證:平面EAB⊥平面ABCD;
(2)求直線AE與平面CDE所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:解答題
在等腰梯形ABCD中,AD∥BC,AD=BC,∠ABC=60°,N是BC的中點(diǎn),將梯形ABCD繞AB旋轉(zhuǎn)90°,得到梯形ABC′D′(如圖).
(1)求證:AC⊥平面ABC′;
(2)求證:C′N∥平面ADD′;
(3)求二面角A-C′N-C的余弦值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四邊形ABCD滿足BC∥AD,AB⊥AD,AB=BC=1.點(diǎn)E,F分別為側(cè)棱PB,PC上的點(diǎn),且=λ.
(1)求證:EF∥平面PAD.
(2)當(dāng)λ=時,求異面直線BF與CD所成角的余弦值;
(3)是否存在實(shí)數(shù)λ,使得平面AFD⊥平面PCD?若存在,試求出λ的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
在正三棱柱ABC-A1B1C1中,AB=2,AA1=,點(diǎn)D為AC的中點(diǎn),點(diǎn)E在線段AA1上.
(1)當(dāng)AE∶EA1=1∶2時,求證DE⊥BC1;
(2)是否存在點(diǎn)E,使二面角D-BE-A等于60°,若存在求AE的長;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,四邊形ABCD為矩形,PD⊥平面ABCD,PD∥QA,QA=AD=PD.
(1)求證:平面PQC⊥平面DCQ;
(2)若二面角Q-BP-C的余弦值為-,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com