科目: 來源: 題型:解答題
已知頂點為原點的拋物線的焦點與橢圓的右焦點重合與在第一和第四象限的交點分別為.
(1)若△AOB是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率;
(3)點為橢圓上的任一點,若直線、分別與軸交于點和,證明:.
查看答案和解析>>
科目: 來源: 題型:解答題
拋物線的方程為,過拋物線上一點()作斜率為的兩條直線分別交拋物線于兩點(三點互不相同),且滿足(且).
(1)求拋物線的焦點坐標和準線方程;
(2)設直線上一點,滿足,證明線段的中點在軸上;
(3)當=1時,若點的坐標為,求為鈍角時點的縱坐標的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
已知命題:方程所表示的曲線為焦點在軸上的橢圓;命題:實數(shù)滿足不等式.
(1)若命題為真,求實數(shù)的取值范圍;
(2)若命題是命題的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
動點到定點與到定直線,的距離之比為 .
(1)求的軌跡方程;
(2)過點的直線(與x軸不重合)與(1)中軌跡交于兩點、.探究是否存在一定點E(t,0),使得x軸上的任意一點(異于點E、F)到直線EM、EN的距離相等?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知動圓過定點(1,0),且與直線相切.
(1)求動圓圓心的軌跡方程;
(2)設是軌跡上異于原點的兩個不同點,直線和的傾斜角分別為和,①當時,求證直線恒過一定點;
②若為定值,直線是否仍恒過一定點,若存在,試求出定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓與的離心率相等. 直線與曲線交于兩點(在的左側(cè)),與曲線交于兩點(在的左側(cè)),為坐標原點,.
(1)當=,時,求橢圓的方程;
(2)若,且和相似,求的值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓的中心為原點,離心率,其一個焦點在拋物線的準線上,若拋物線與直線相切.
(1)求該橢圓的標準方程;
(2)當點在橢圓上運動時,設動點的運動軌跡為.若點滿足:,其中是上的點,直線與的斜率之積為,試說明:是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
在平面直角坐標系xOy中,橢圓C的中心為原點,焦點F1,F(xiàn)2在x軸上,離心率為.過F1的直線交橢圓C于A,B兩點,且△ABF2的周長為8.過定點M(0,3)的直線l1與橢圓C交于G,H兩點(點G在點M,H之間).
(1)求橢圓C的方程;
(2)設直線l1的斜率k>0,在x軸上是否存在點P(m,0),使得以PG,PH為鄰邊的平行四邊形為菱形?如果存在,求出m的取值范圍;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,離心率為,且過點(2,).
(1)求橢圓C的標準方程;
(2)M,N,P,Q是橢圓C上的四個不同的點,兩條都不和x軸垂直的直線MN和PQ分別過點F1,F(xiàn)2,且這兩條直線互相垂直,求證:為定值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖X15-3所示,已知圓C1:x2+(y-1)2=4和拋物線C2:y=x2-1,過坐標原點O的直線與C2相交于點A,B,定點M的坐標為(0,-1),直線MA,MB分別與C1相交于點D,E.
(1)求證:MA⊥MB;
(2)記△MAB,△MDE的面積分別為S1,S2,若=λ,求λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com