相關(guān)習(xí)題
 0  154909  154917  154923  154927  154933  154935  154939  154945  154947  154953  154959  154963  154965  154969  154975  154977  154983  154987  154989  154993  154995  154999  155001  155003  155004  155005  155007  155008  155009  155011  155013  155017  155019  155023  155025  155029  155035  155037  155043  155047  155049  155053  155059  155065  155067  155073  155077  155079  155085  155089  155095  155103  266669 

科目: 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),曲線C2的參數(shù)方程為(a>b>0,φ為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α與C1,C2各有一個交點.當(dāng)α=0時,這兩個交點間的距離為2,當(dāng)α=時,這兩個交點重合.
(1)分別說明C1,C2是什么曲線,并求出a與b的值.
(2)設(shè)當(dāng)α=時,l與C1,C2的交點分別為A1,B1,當(dāng)α=-時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

已知橢圓C的極坐標(biāo)方程為ρ2=,點F1,F2為其左、右焦點,直線l的參數(shù)方程為(t為參數(shù),t∈R).
(1)求直線l和曲線C的普通方程.
(2)求點F1,F2到直線l的距離之和.

查看答案和解析>>

科目: 來源: 題型:解答題

已知曲線C的極坐標(biāo)方程為ρ2=,以極點為原點,極軸所在直線為x軸建立平面直角坐標(biāo)系.
(1)求曲線C的直角坐標(biāo)方程及參數(shù)方程.
(2)若P(x,y)是曲線C上的一個動點,求x+2y的最小值,并求P點的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

以直角坐標(biāo)系的原點為極點,x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.已知直線l的極坐標(biāo)方程為ρsin(θ-)=6,圓C的參數(shù)方程為(θ為參數(shù)),求直線l被圓C截得的弦長.

查看答案和解析>>

科目: 來源: 題型:解答題

已知直線l的參數(shù)方程:(t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2sin(θ+),判斷直線和圓C的位置關(guān)系.

查看答案和解析>>

科目: 來源: 題型:解答題

已知平面直角坐標(biāo)系,以為極點,軸的非負半軸為極軸建立極坐標(biāo)系,,曲線的參數(shù)方程為.點是曲線上兩點,點的極坐標(biāo)分別為.
(1)寫出曲線的普通方程和極坐標(biāo)方程;
(2)求的值.

查看答案和解析>>

科目: 來源: 題型:解答題

在極坐標(biāo)系中, O為極點, 半徑為2的圓C的圓心的極坐標(biāo)為
(1)求圓C的極坐標(biāo)方程;
(2)在以極點O為原點,以極軸為x軸正半軸建立的直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),直線與圓C相交于A,B兩點,已知定點,求|MA|·|MB|.

查看答案和解析>>

科目: 來源: 題型:解答題

在極坐標(biāo)系中, O為極點, 半徑為2的圓C的圓心的極坐標(biāo)為
(1)求圓C的極坐標(biāo)方程;
(2)在以極點O為原點,以極軸為x軸正半軸建立的直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),直線與圓C相交于A,B兩點,已知定點,求|MA|·|MB|.

查看答案和解析>>

科目: 來源: 題型:解答題

在直角坐標(biāo)系中,直線的方程為,曲線的參數(shù)方程為
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,點的極坐標(biāo)為,判斷點與直線的位置關(guān)系;
(2)設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為
(1)求圓的直角坐標(biāo)方程;
(2)若是直線與圓面的公共點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案