相關(guān)習(xí)題
 0  155374  155382  155388  155392  155398  155400  155404  155410  155412  155418  155424  155428  155430  155434  155440  155442  155448  155452  155454  155458  155460  155464  155466  155468  155469  155470  155472  155473  155474  155476  155478  155482  155484  155488  155490  155494  155500  155502  155508  155512  155514  155518  155524  155530  155532  155538  155542  155544  155550  155554  155560  155568  266669 

科目: 來源: 題型:解答題

為了解學(xué)生身高情況,某校以10%的比例對全校700名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,測得身高情況的統(tǒng)計(jì)圖如下:

(Ⅰ)估計(jì)該校男生的人數(shù);
(Ⅱ)估計(jì)該校學(xué)生身高在170~185 cm之間的概率;
(Ⅲ)從樣本中身高在180~190 cm之間的男生中任選2人,求至少有1人身高在185~190 cm之間的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):

單價(jià)x(元)
8
8.2
8.4
8.6
8.8
9
銷量y (件 )
90
84
83
80
75
68
(I)求銷量與單價(jià)間的回歸直線方程;
(II)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(I)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目: 來源: 題型:解答題

為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如右表:

               性別
是否需要志愿者


需要
40
30
不需要
160
270
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的比例;
(2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(3)根據(jù)(2)的結(jié)論,能否提出更好的調(diào)查方法來估計(jì)該地區(qū)的老年人中需要志愿者提供幫助的老年人比例?說明理由。
附:
   

0.050
0.010
0.001
 
3.841
6.635
10.828

查看答案和解析>>

科目: 來源: 題型:解答題

在某大學(xué)自主招生考試中,所有選報(bào)II類志向的考生全部參加了“數(shù)學(xué)與邏輯”和“閱讀與表達(dá)”兩個科目的考試,成績分為A,B,C,D,E五個等級. 某考場考生兩科的考試成績的數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中“數(shù)學(xué)與邏輯”科目的成績?yōu)锽的考生有10人.

(Ⅰ)求該考場考生中“閱讀與表達(dá)”科目中成績?yōu)锳的人數(shù);
(Ⅱ)若等級A,B,C,D,E分別對應(yīng)5分,4分,3分,2分,1分.
(i)求該考場考生“數(shù)學(xué)與邏輯”科目的平均分;
(ii)若該考場共有10人得分大于7分,其中有2人10分,2人9分,6人8分. 從這10
人中隨機(jī)抽取兩人,求兩人成績之和的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

在一段時間內(nèi),某種商品價(jià)格(萬元)和需求量之間的一組數(shù)據(jù)為:

價(jià) 格
1.4
1.6
1.8
2
2.2
需求量
12
10
7
5
3
(1)進(jìn)行相關(guān)性檢驗(yàn);
(2)如果之間具有線性相關(guān)關(guān)系,求出回歸直線方程,并預(yù)測當(dāng)價(jià)格定為1.9萬元,需求量大約是多少?(精確到0.01
參考公式及數(shù)據(jù):,,
相關(guān)性檢驗(yàn)的臨界值表:
n-2
1
2
3
4
5
6
7
8
9
10
小概率0.01
1.000
0.990
0.959
0.917
0.874
0.834
0.798
0.765
0.735
0.708

查看答案和解析>>

科目: 來源: 題型:解答題

在生產(chǎn)過程中,測得纖維產(chǎn)品的纖度(表示纖維粗細(xì)的一種量)共有100個數(shù)據(jù),將數(shù)據(jù)分組如表:

分組
頻數(shù)












合計(jì)

(1)列出頻率分布表,并畫出頻率分布直方圖;
(2)估計(jì)纖度落在中的概率及纖度小于的概率是多少?
(3)從頻率分布直方圖估計(jì)出纖度的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

某車間為了規(guī)定工時定額,需要確定加工零件所花費(fèi)的時間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:

零件的個數(shù)x(個)
2
3
4
5
加工的時間y(小時)
2.5
3
4
4.5
(1)回歸分析,并求出y關(guān)于x的線性回歸方程=bx+a;
(2)試預(yù)測加工10個零件需要多少時間?

n-2
1
2
3
4
小概率0.05
0.997
0.950
0.878
0.811
小概率0.01
1.000
0.990
0.959
0.917

查看答案和解析>>

科目: 來源: 題型:解答題

某市調(diào)研考試后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.

 
優(yōu)秀
非優(yōu)秀
合計(jì)
甲班
10
 
 
乙班
 
30
 
合計(jì)
 
 
110
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號.試求抽到9號或10號的概率.附: 

查看答案和解析>>

科目: 來源: 題型:解答題

在研究色盲與性別的關(guān)系調(diào)查中,調(diào)查了男性480人,其中有38人患色盲,調(diào)查的520個女性中6人患色盲,
(1)根據(jù)以上的數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)若認(rèn)為“性別與患色盲有關(guān)系”,則出錯的概率會是多少
(本題可以參考兩個分類變量x和y有關(guān)系的可信度表:)

查看答案和解析>>

科目: 來源: 題型:解答題

某校對高三年級的學(xué)生進(jìn)行體檢,現(xiàn)將高三男生的體重(單位:kg)數(shù)據(jù)進(jìn)行整理后分成六組,并繪制頻率分布直方圖(如圖).已知圖中從左到右第一、第六小組的頻率分別為0.16,0.07,第一、第二、第三小組的頻率成等比數(shù)列,第三、第四、第五、第六小組的頻率成等差數(shù)列,且第三小組的頻數(shù)為100,則該校高三年級的男生總數(shù)為        

查看答案和解析>>

同步練習(xí)冊答案