相關習題
 0  155859  155867  155873  155877  155883  155885  155889  155895  155897  155903  155909  155913  155915  155919  155925  155927  155933  155937  155939  155943  155945  155949  155951  155953  155954  155955  155957  155958  155959  155961  155963  155967  155969  155973  155975  155979  155985  155987  155993  155997  155999  156003  156009  156015  156017  156023  156027  156029  156035  156039  156045  156053  266669 

科目: 來源: 題型:解答題

百貨大樓在五一節(jié)舉行抽獎活動,規(guī)則是:從裝有編為、、、四個小球的抽獎箱中同時抽出兩個小球,兩個小球號碼相加之和等于中一等獎,等于中二等獎,等于中三等獎。
(1)求中三等獎的概率;
(2)求中獎的概率。

查看答案和解析>>

科目: 來源: 題型:解答題

某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產量是否與年齡有關.現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產件數,然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,在將兩組工人的日平均生產件數分成5組: ,,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中日平均生產件數不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.
(2)規(guī)定日平均生產件數不少于80件者為“生產能手”,請你根據已知條件完成的列聯(lián)表,并判斷是否有的把握認為“生產能手與工人所在的年齡組有關”?
  
附表:

查看答案和解析>>

科目: 來源: 題型:解答題

某聯(lián)歡晚會舉行抽獎活動,舉辦方設置了甲.乙兩種抽獎方案,方案甲的中獎率為,中將可以獲得2分;方案乙的中獎率為,中將可以得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中將與否互不影響,晚會結束后憑分數兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,求的概率;
(2)若小明.小紅兩人都選擇方案甲或方案乙進行抽獎,問:他們選擇何種方案抽獎,累計的得分的數學期望較大?

查看答案和解析>>

科目: 來源: 題型:解答題

某車間共有名工人,隨機抽取名,他們某日加工零件個數的莖葉圖如圖所示,其中莖為十位數,葉為個位數.

(Ⅰ) 根據莖葉圖計算樣本均值;
(Ⅱ) 日加工零件個數大于樣本均值的工人為優(yōu)秀工人,根據莖葉圖推斷該車間名工人中有幾名優(yōu)秀工人;
(Ⅲ) 從該車間名工人中,任取人,求恰有名優(yōu)秀工人的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

將背面相同正面分別標有1、2、3、4的四張卡片洗勻后背面朝上放在桌面上,(1)從中隨機的抽取一張卡片,求該卡片正面上的數字是偶數的概率(2)先從中隨機的抽取一張卡片(不放回),將該卡片正面上的數字作為十位數字,再隨機的抽取一張卡片,將該卡片正面上的數字作為個位數字,則組成的兩位數恰好是4的倍數的概率是多少?

查看答案和解析>>

科目: 來源: 題型:解答題

A、B兩個試驗方案在某科學試驗中成功的概率相同,已知A、B兩個方案至少一個方案試驗成功的概率是0.36.
(1)求兩個方案均獲成功的概率;
(2)設試驗成功的方案的個數為隨機變量ξ,求ξ的分布列及數學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

某研究性學習小組對晝夜溫差與某種子發(fā)芽數的關系進行研究,他們分別記錄了四天中每天晝夜溫差與每天100粒種子浸泡后的發(fā)芽數,得到如下資料:

時間
第一天
第二天
第三天
第四天
溫差(℃)
9
10
8
11
發(fā)芽數(粒)
33
39
26
46
(1)求這四天浸泡種子的平均發(fā)芽率;
(2)若研究的一個項目在這四天中任選2天的種子發(fā)芽數來進行,記發(fā)芽的種子數分別為m,n(m<n),則以(m,n)的形式列出所有的基本事件,并求“m,n滿足”的事件A的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

根據以往資料統(tǒng)計,大學生購買某品牌平板電腦時計劃采用分期付款的期數ζ的分布列為

ζ
1
2
3
P
0.4
0.25
0.35
(1)若事件A={購買該平板電腦的3位大學生中,至少有1位采用1期付款},求事件A的概率P(A);
(2)若簽訂協(xié)議后,在實際付款中,采用1期付款的沒有變化,采用2、3期付款的都至多有一次改付款期數的機會,其中采用2期付款的只能改為3期,概率為;采用3期付款的只能改為2期,概率為.數碼城銷售一臺該平板電腦,實際付款期數與利潤(元)的關系為

1
2
3
η
200
250
300
(3)求的分布列及期望E().

查看答案和解析>>

科目: 來源: 題型:解答題

某射手每次射擊擊中目標的概率均為,且每次射擊的結果互不影響
(I)假設這名射手射擊3次,求至少2次擊中目標的概率
(II)假設這名射手射擊3次,每次擊中目標10分,未擊中目標得0分,在3次射擊中,若有兩次連續(xù)擊中目標,而另外一次未擊中目標,則額外加5分;若3次全部擊中,則額外加10分。用隨機變量§表示射手射擊3次后的總得分,求§的分布列和數學期望。

查看答案和解析>>

科目: 來源: 題型:解答題

一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(1)從袋中隨機取兩個球,求取出的球的編號之和不大于4的概率;
(2)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求n<m+2的概率.

查看答案和解析>>

同步練習冊答案