相關(guān)習題
 0  165542  165550  165556  165560  165566  165568  165572  165578  165580  165586  165592  165596  165598  165602  165608  165610  165616  165620  165622  165626  165628  165632  165634  165636  165637  165638  165640  165641  165642  165644  165646  165650  165652  165656  165658  165662  165668  165670  165676  165680  165682  165686  165692  165698  165700  165706  165710  165712  165718  165722  165728  165736  266669 

科目: 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,


(Ⅰ)求證:;
(Ⅱ)在上找一點,使得平面,請確定點的位置,并給出證明.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐S—ABCD的底面是邊長為1的正方形,SD垂直于底面ABCD,SB=

(Ⅰ)求面ASD與面BSC所成二面角的大小;
(Ⅱ)設(shè)棱SA的中點為M,求異面直線DM與SB所成角的大。
(Ⅲ)求點D到平面SBC的距離.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖所示,在棱長為2的正方體中,、分別為、的中點. (1)求證: (1)、//平面;
(2)、求證:
(3)、求三棱錐的體積.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是邊長為1的菱形,, 底面, ,的中點.
(Ⅰ)、求異面直線AB與MD所成角的大小;
(Ⅱ)、求平面與平面所成的二面角的余弦值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,在四棱錐P—ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB//DC,∠BCD=90°,E為棱PC上異于C的一點,DE⊥BE

(1)證明:E為PC的中點;
(2)求二面角P—DE—A的大小

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四棱錐P-ABCD中,PD上⊥平面ABCD,AD⊥CD,且BD平分∠ADC,
    E為PC的中點,AD=CD=l,BC=PC,
(Ⅰ)證明PA∥平面BDE;
(Ⅱ)證明AC⊥平面PBD:
(Ⅲ)求四棱錐P-ABCD的體積,

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題12分)
如圖,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2。


 
(1)證明:AB1⊥BC1;

(2)求點B到平面AB1C1的距離;
(3)求二面角C1—AB1—A1的大小。

查看答案和解析>>

科目: 來源:不詳 題型:解答題

((本小題12分)
如圖, 在三棱柱中, 底面,, ,, 點D的中點.

(1) 求證;
(2) 求證

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分12分)
已知梯形中,,
,分別是上的點,,,的中點。沿將梯形翻折,使平面⊥平面 (如圖) .

(Ⅰ)當時,求證: ;
(Ⅱ)以為頂點的三棱錐的體積記為,求的最大值;
(Ⅲ)當取得最大值時,求鈍二面角的余弦值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分14分)
如圖5,在三棱柱中,側(cè)棱底面,的中點,
.
(1) 求證:平面;
(2)若四棱錐的體積為,求二面角的正切值.
圖5

查看答案和解析>>

同步練習冊答案