相關(guān)習(xí)題
 0  169264  169272  169278  169282  169288  169290  169294  169300  169302  169308  169314  169318  169320  169324  169330  169332  169338  169342  169344  169348  169350  169354  169356  169358  169359  169360  169362  169363  169364  169366  169368  169372  169374  169378  169380  169384  169390  169392  169398  169402  169404  169408  169414  169420  169422  169428  169432  169434  169440  169444  169450  169458  266669 

科目: 來源:不詳 題型:填空題

已知拋物線的準(zhǔn)線與雙曲線的左準(zhǔn)線重合,則p的值為 ▲  

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓:,過坐標(biāo)原點(diǎn)O作兩條互相垂直的射線,與橢圓分別交于A,B兩點(diǎn).
(I)求證O到直線AB的距離為定值.
(Ⅱ)求△0AB面積的最大值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

.設(shè)動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大.
(Ⅰ)求動(dòng)點(diǎn)的軌跡方程
(Ⅱ)設(shè)過點(diǎn)的直線交曲線兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的最小值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(12分)已知三點(diǎn)、(-2,0)、(2,0)。
(1)求以、為焦點(diǎn)且過點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)求以、為頂點(diǎn)且以(1)中橢圓左、右頂點(diǎn)為焦點(diǎn)的雙曲線方程.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

,,的等差中項(xiàng),則動(dòng)點(diǎn)的軌跡方程是(  )                                                                  
A.B.C.D.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分12分)已知定義在正實(shí)數(shù)集上的函數(shù),其中.設(shè)兩曲線有公共點(diǎn),且在該點(diǎn)處的切線相同.
(1)用表示,并求的最大值;
(2)求證:).

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知拋物線,焦點(diǎn)為,其準(zhǔn)線與軸交于點(diǎn);橢圓:分別以為左、右焦點(diǎn),其離心率;且拋物線和橢圓的一個(gè)交點(diǎn)記為
(1)當(dāng)時(shí),求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,若直線經(jīng)過橢圓的右焦點(diǎn),且與拋物線相交于兩點(diǎn),若弦長(zhǎng)等于的周長(zhǎng),求直線的方程

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知一條曲線上的點(diǎn)到定點(diǎn)的距離是到定點(diǎn)距離的二倍,求這條曲線的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分13分)分別以雙曲線的焦點(diǎn)為頂點(diǎn),以雙曲線G的頂點(diǎn)為焦點(diǎn)作橢圓C。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)P的坐標(biāo)為,在y軸上是否存在定點(diǎn)M,過點(diǎn)M且斜率為k的動(dòng)直線 交橢圓于A、B兩點(diǎn),使以AB為直徑的圓恒過點(diǎn)P,若存在,求出M的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本題滿分12分)已知平面上一定點(diǎn)C(4,0)和一定直線為該平面上一動(dòng)點(diǎn),作,垂足為Q,且(
(Ⅰ)問點(diǎn)P在什么曲線上?并求出該曲線的方程;
(Ⅱ)設(shè)直線與(1)中的曲線交于不同的兩點(diǎn)A、B,是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過點(diǎn)D(0,-2)?若存在,求出k的值,若不存在,說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案