相關(guān)習(xí)題
 0  228135  228143  228149  228153  228159  228161  228165  228171  228173  228179  228185  228189  228191  228195  228201  228203  228209  228213  228215  228219  228221  228225  228227  228229  228230  228231  228233  228234  228235  228237  228239  228243  228245  228249  228251  228255  228261  228263  228269  228273  228275  228279  228285  228291  228293  228299  228303  228305  228311  228315  228321  228329  266669 

科目: 來源: 題型:選擇題

16.已知復(fù)數(shù)z=$\frac{m}{1-i}+\frac{1-i}{2}$(i是虛數(shù)單位)的實部與虛部的和為1,則實數(shù)m的值為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知x、y滿足不等式組$\left\{\begin{array}{l}x≥0\\ x-y≤0\\ 4x+3y≤14\end{array}$,設(shè)(x+2)2+(y+1)2的最小值為ω,則函數(shù)f(t)=sin(ωt+$\frac{π}{6}$)的最小正周期為( 。
A.$\frac{π}{2}$B.$\frac{π}{2}$C.$\frac{π}{2}$D.$\frac{2π}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知i是虛數(shù)單位,復(fù)數(shù)z=$\frac{m}{1-i}$(m∈R),若|z|=$\int_0^π{(sinx-\frac{1}{π}})dx$,則m的值為( 。
A.$±\sqrt{2}$B.0C.1D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知向量$\overrightarrow a$=(0,4),$\overrightarrow b$=(2,2),則下列結(jié)論中正確的是( 。
A.$|{\overrightarrow a}|=|{\overrightarrow b}|$B.$\overrightarrow a⊥\overrightarrow b$C.$(\overrightarrow a-\overrightarrow b)∥\overrightarrow a$D.$\overrightarrow a•\overrightarrow b=8$

查看答案和解析>>

科目: 來源: 題型:解答題

12.在四棱錐P-ABCD中,平面PAD⊥平面ABCD,四邊形ABCD為直角梯形,BC∥AD,∠ADC=90°,BC=CD=$\frac{1}{2}$AD=1,PA=PD,E,F(xiàn)分別為線段AD,PC的中點.
(1)求證:PA∥平面BEF;
(2)若直線PC與AB所成的角為45°,求線段PE的長.

查看答案和解析>>

科目: 來源: 題型:解答題

11.定理:平面內(nèi)的一條直線與平面的一條斜線在平面內(nèi)的射影垂直,則這條線段垂直于斜線.
試證明此定理:如圖所示:若PA⊥α,A是垂足,斜線PO∩α=O,a?α,a⊥AO,試證明a⊥PO.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.設(shè)實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y≥x-1}\\{y≤5-2x}\end{array}\right.$,(2,1)是目標函數(shù)z=-ax+y取最大值的唯一最優(yōu)解,則實數(shù)a的取值范圍是( 。
A.(0,1)B.(0,1]C.(-∞,-2)D.(-∞,-2]

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{a}{x}$-1+lnx,若存在x0>0,使得f(x0)≤0有解,則實數(shù)a的取值范圍為(-∞,1].

查看答案和解析>>

科目: 來源: 題型:填空題

8.從某中學(xué)的甲乙兩個班中各隨機抽取10名同學(xué),分別測量他們的身高(單位:cm),得到身高數(shù)據(jù)的莖葉圖如圖所示,若從乙班被抽取的這10名同學(xué)中再隨機抽取2名身高不低于173cm的同學(xué),則身高為176cm的同學(xué)被抽到的概率為$\frac{2}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=aex-1-x2+bln(x+1).
(1)當a=0,b=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)f(x)在點(0,f(0))處的切線方程為x-ey+1=0,當x(-1,1]時,求證:f(x)<$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案