相關(guān)習(xí)題
 0  228961  228969  228975  228979  228985  228987  228991  228997  228999  229005  229011  229015  229017  229021  229027  229029  229035  229039  229041  229045  229047  229051  229053  229055  229056  229057  229059  229060  229061  229063  229065  229069  229071  229075  229077  229081  229087  229089  229095  229099  229101  229105  229111  229117  229119  229125  229129  229131  229137  229141  229147  229155  266669 

科目: 來(lái)源: 題型:解答題

2.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8,BC是⊙O的直徑,AB=AC=6,OE∥AD 
(1)求二面角B-AD-F的大。
(2)求直線BD與EF所成的角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

1.已知正三棱柱ABC-A1B1C1的體積為$\frac{{9\sqrt{3}}}{4}$,底面邊長(zhǎng)為3,若O為底面A1B1C1的中心,則OA與平面ABC所成角的大小為$\frac{π}{6}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.棱長(zhǎng)為a的正四面體的外接球和內(nèi)切球的體積比是(  )
A.9:1B.4:1C.27:1D.8:1

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

19.已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E,F(xiàn)分別是AB,PC的中點(diǎn),設(shè)AC中點(diǎn)為O,若∠PDA=45°,則EF與平面ABCD所成的角的大小為45°.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

18.已知某廠的產(chǎn)量x噸與能耗y噸的機(jī)組對(duì)應(yīng)數(shù)據(jù):
x3456
y2.5m44.5
由以上數(shù)據(jù)求出線性回歸方程為y=0.35+0.7x,那么表中m的值為3.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.已知某一起的使用年限x(年)和其維修費(fèi)用y(萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù);
使用年限x12345
維修費(fèi)用y1.32.54.05.66.6
由散點(diǎn)圖知y對(duì)x具有線性相關(guān)關(guān)系,利用線性回歸方程估計(jì)使用年限為10年時(shí),維修費(fèi)用為( 。┤f(wàn)元.
A.12.86B.13.38C.13.59D.15.02

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.某地政府決定用同規(guī)格大理石建一堵七層的護(hù)墻,各層用該種大理石塊數(shù)是:第一層用全部大理石的一半多一塊,第二層用剩下的一半多一塊,第三層…以此類推,到第七層恰好將大理石用完,則共需該種大理石( 。
A.128塊B.126塊C.64塊D.62塊

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=2,BC=2$\sqrt{2}$,M,N分別是CC1,BC的中點(diǎn),點(diǎn)P在直線A1B1上,且$\overrightarrow{{A_1}P}=λ\overrightarrow{{A_1}{B_1}}$.
(Ⅰ)證明:無(wú)論λ取何值,總有AM⊥PN;
(Ⅱ)當(dāng)λ取何值時(shí),直線PN與平面ABC所成的角θ最大?并求該角取最大值時(shí)的正切值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.下表是種產(chǎn)品銷售收入與銷售量之間的一組數(shù)據(jù):
銷售量x(噸)2356
銷售收入y(千元)78912
(1)求出回歸直線方程;
(2)根據(jù)回歸方程估計(jì)銷售量為7噸時(shí)的銷售收入.
參考數(shù)據(jù):2×7+3×8+5×9+6×12=155,$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.在三棱錐P-ABC中,PA⊥平面ABC,△ABC為正三角形,D,E分別為BC,CA的中點(diǎn).
(1)在BC上求做一點(diǎn)F,使AD∥平面PEF,并證明你的結(jié)論;
(2)設(shè)AB=PA=2,對(duì)于(1)中的點(diǎn)F,求三棱錐B-PEF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案