相關(guān)習(xí)題
 0  229017  229025  229031  229035  229041  229043  229047  229053  229055  229061  229067  229071  229073  229077  229083  229085  229091  229095  229097  229101  229103  229107  229109  229111  229112  229113  229115  229116  229117  229119  229121  229125  229127  229131  229133  229137  229143  229145  229151  229155  229157  229161  229167  229173  229175  229181  229185  229187  229193  229197  229203  229211  266669 

科目: 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}{x=-1+tcosα}\\{1+tsinα}\end{array}\right.$(t為參數(shù),其中0≤α<π).以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2:ρ+$\frac{9}{ρ}$=4cosθ-6sinθ(ρ>0)
(I)當(dāng)α=$\frac{3π}{4}$時,設(shè)曲線C1與C2交于A、B兩點,求|AB|;
(Ⅱ)已知曲線C1過定點P,Q是曲線C2上的動點,求|PQ|的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知直線l:$\left\{\begin{array}{l}{x=1+cos60°t}\\{y=sin60°t}\end{array}\right.$(t為參數(shù)),曲線C:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)分別將直線l和曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;
(2)求與直線l平行且與曲線C相切的直線l1的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知直線l:$\left\{\begin{array}{l}{x=\sqrt{3}+tcosα}\\{y=tsinα}\end{array}\right.$(t為參致)與圓C:$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}\right.$(θ為參數(shù))相切.則α=0或$\frac{2π}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.在伸縮變換$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$的作用后,直線y=2x變成直線( 。
A.y=4xB.y=$\frac{1}{2}$xC.y=xD.y=$\frac{1}{4}$x

查看答案和解析>>

科目: 來源: 題型:解答題

15.求曲線$\left\{\begin{array}{l}{x=2\sqrt{3}cosθ}\\{y=3\sqrt{2}sinθ}\end{array}\right.$(θ為參數(shù))中兩焦點間的距離.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.與⊙D:(x+1)2+(y-2)2=$\frac{1}{2}$相切且在兩坐標(biāo)軸上的截距相等的直線的條數(shù)有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

13.參數(shù)方程$\left\{\begin{array}{l}{x=5}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))表示的曲線是( 。
A.一條直線B.兩條直線C.一條射線D.一條線段

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知圓的漸開線的參數(shù)方程是$\left\{\begin{array}{l}{x=cosφ+φsinφ}\\{y=sinφ-φcosφ}\end{array}\right.$(φ為參數(shù)),則此漸開線對應(yīng)的基圓的直徑是2,當(dāng)參數(shù)φ=$\frac{π}{2}$時,對應(yīng)的曲線上的點的坐標(biāo)為($\frac{π}{2}$,1).

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知參數(shù)方程$\left\{\begin{array}{l}{x=\frac{a(1-{t}^{2})}{1+{t}^{2}}}\\{y=\frac{2\sqrt{3}t}{1+{t}^{2}}}\end{array}\right.$(a∈R,t為參數(shù))表示離心率為$\frac{1}{2}$的橢圓C,直線l經(jīng)過C的右焦點F2,且與C交于M、N兩點.
(1)求a的值;
(2)求$\overrightarrow{{F}_{2}M}$$•\overrightarrow{{F}_{2}N}$的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

10.某幾何體的三視圖如圖所示.則該幾何體的體積是90.

查看答案和解析>>

同步練習(xí)冊答案