相關(guān)習(xí)題
 0  229115  229123  229129  229133  229139  229141  229145  229151  229153  229159  229165  229169  229171  229175  229181  229183  229189  229193  229195  229199  229201  229205  229207  229209  229210  229211  229213  229214  229215  229217  229219  229223  229225  229229  229231  229235  229241  229243  229249  229253  229255  229259  229265  229271  229273  229279  229283  229285  229291  229295  229301  229309  266669 

科目: 來(lái)源: 題型:選擇題

17.把“正整數(shù)N除以正整數(shù)m后的余數(shù)為n”記為N≡n(modm),例如8≡2(mod3).執(zhí)行如圖的該程序框圖后,輸出的i值為( 。
A.14B.17C.22D.23

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

16.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿(mǎn)足|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{c}$|≠0,$\overrightarrow{a}$+$\overrightarrow$=$\sqrt{3}$$\overrightarrow{c}$,則向量$\overrightarrow{a}$與向量$\overrightarrow{c}$的夾角是$\frac{π}{6}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,頂點(diǎn)A(a,0),B(0,b),中心O到直線AB的距離為$\frac{2}{\sqrt{3}}$.
(1)求橢圓C的方程;
(2)設(shè)橢圓C上一動(dòng)點(diǎn)P滿(mǎn)足:$\overrightarrow{OP}$=λ$\overrightarrow{OM}$+2μ$\overrightarrow{ON}$,其中M,N是橢圓C上的點(diǎn),直線OM與ON的斜率之積為-$\frac{1}{2}$,若Q(λ,μ)為一動(dòng)點(diǎn),E1(-$\frac{\sqrt{3}}{2}$,0),E2($\frac{\sqrt{3}}{2}$,0)為兩定點(diǎn),求|QE1|+|QE2|的值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.四棱錐S-ABCD中,底面ABCD為平行四邊形,已知∠ABC=45°,AB=2,BC=2$\sqrt{2}$,SB=SC.
(1)設(shè)平面SCD與平面SAB的交線為l,求證:l∥AB;
(2)求證:SA⊥BC.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

13.設(shè)數(shù)列{an}前n項(xiàng)和Sn,且a1=1,{Sn-n2an}為常數(shù)列,則an=$\frac{2}{n(n+1)}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

12.我國(guó)古代秦九韶算法可計(jì)算多項(xiàng)式anxn+an-1xn-1+…+a1x+a0的值,當(dāng)多項(xiàng)式為x4+4x3+6x2+4x+1時(shí),求解它的值所反映的程序框圖如圖所示,當(dāng)x=1時(shí)輸出的結(jié)果為( 。
A.15B.5C.16D.11

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)長(zhǎng)軸為4,離心率為$\frac{1}{2}$,點(diǎn)P為橢圓上異于頂點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)P作橢圓的切線l交y軸于點(diǎn)A,直線l′過(guò)點(diǎn)P且垂直于l交y軸于B,試判斷以AB為直徑的圓能否經(jīng)過(guò)定點(diǎn),若能求出定點(diǎn)坐標(biāo),若不能說(shuō)出理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.2015年7月,“國(guó)務(wù)院關(guān)于積極推進(jìn)‘互聯(lián)網(wǎng)+’行動(dòng)的指導(dǎo)意見(jiàn)”正式公布,在“互聯(lián)網(wǎng)+”的大潮下,我市某高中“微課堂”引入教學(xué),某高三教學(xué)教師錄制了“導(dǎo)數(shù)的應(yīng)用”與“概率的應(yīng)用”兩個(gè)單元的微課視頻放在所教兩個(gè)班級(jí)(A班和B班)的網(wǎng)頁(yè)上,A班(實(shí)驗(yàn)班,基礎(chǔ)較好)共有學(xué)生60人,B班(普通班,基礎(chǔ)較差)共有學(xué)生60人,該教師規(guī)定兩個(gè)班的每一名同學(xué)必須在某一天觀看其中一個(gè)單元的微課視頻,第二天經(jīng)過(guò)統(tǒng)計(jì),A班有40人觀看了“導(dǎo)數(shù)的應(yīng)用”視頻,其他20人觀看了“概率的應(yīng)用”視頻,B班有25人觀看了“導(dǎo)數(shù)的應(yīng)用”視頻,其他35人觀看了“概率的應(yīng)用”視頻.
(1)完成下列2×2列聯(lián)表:
 觀看“導(dǎo)數(shù)的應(yīng)用”
視頻人數(shù)
觀看“概率的應(yīng)用”
視頻人數(shù)
總計(jì)
A班   
B班   
總計(jì)   
判斷是否有99%的把握認(rèn)為學(xué)生選擇兩個(gè)視頻中的哪一個(gè)與班級(jí)有關(guān)?
(2)在A班中用分層抽樣的方法抽取6人進(jìn)行學(xué)習(xí)效果調(diào)查;
①求抽取的6人中觀看“導(dǎo)數(shù)的應(yīng)用”視頻的人數(shù)及觀看“概率的應(yīng)用”視頻的人數(shù);
②在抽取的6人中再隨機(jī)抽取3人,設(shè)3人中觀看“導(dǎo)數(shù)的應(yīng)用”視頻的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
參考公式:K2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
參考數(shù)據(jù):
P(x2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.設(shè)橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的離心率e=$\frac{1}{2}$,動(dòng)點(diǎn)P在橢圓C上,點(diǎn)P到橢圓C的兩個(gè)焦點(diǎn)的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為$\frac{x^2}{m^2}$+$\frac{y^2}{n^2}$=1(m>n>0),橢圓C2的方程為$\frac{x^2}{m^2}$+$\frac{y^2}{n^2}$=λ(λ>0,且λ≠1),則稱(chēng)橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若過(guò)橢圓C上動(dòng)點(diǎn)P的切線l交橢圓C2于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),試證明當(dāng)切線l變化時(shí)|PA|=|PB|并研究△OAB面積的變化情況.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,若4S${\;}_{n}^{2}$-2=a${\;}_{n}^{2}$+$\frac{1}{{a}_{n}^{2}}$(n∈N*),則S400=20.

查看答案和解析>>

同步練習(xí)冊(cè)答案