相關習題
 0  229522  229530  229536  229540  229546  229548  229552  229558  229560  229566  229572  229576  229578  229582  229588  229590  229596  229600  229602  229606  229608  229612  229614  229616  229617  229618  229620  229621  229622  229624  229626  229630  229632  229636  229638  229642  229648  229650  229656  229660  229662  229666  229672  229678  229680  229686  229690  229692  229698  229702  229708  229716  266669 

科目: 來源: 題型:解答題

9.已知點$F(\frac{1}{2},0)$及直線$l:x=-\frac{1}{2}$.P為平面上的動點,過P作直線l的垂線,垂足為Q,且$\overrightarrow{QP}•\overrightarrow{QF}=\overrightarrow{FP}•\overrightarrow{FQ}$.
(1)求動點P的軌跡C的方程;
(2)設圓M過點A(1,0)且圓心M在P的軌跡C上,E1,E2是圓M在y軸上截得的弦,證明弦長|E1E2|是一個常數(shù).

查看答案和解析>>

科目: 來源: 題型:選擇題

8.拋物線C:y2=4x的焦點為F,準線為l,P為拋物線C上一點,且P在第一象限,PM⊥l于點M,線段MF與拋物線C交于點N,若PF的斜率為$\frac{3}{4}$,則$\frac{|MN|}{|NF|}$=( 。
A.$\sqrt{5}$B.$\sqrt{10}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

7.在△ABC中,$BC=1,sinC=\sqrt{2}sinB$,若x=A是函數(shù)f(x)=sinx+cosx的一個極值點,則△ABC的面積為$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.函數(shù)f(x)=axn(1-x)(x>0,n∈N*),當n=-2時,f(x)的極大值為$\frac{4}{27}$.
(1)求a的值;
(2)求證:f(x)+lnx≤0;
(3)求證:f(x)<$\frac{1}{ne}$.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知等比數(shù)列{an}的前n項和為Sn,a1=$\frac{1}{2}$公比q>0,S1+a1,S3+a3,S2+a2成等差數(shù)列.
(1)求an;
(2)設bn=$\frac{1}{(lo{g}_{2}{a}_{n})^{2}}$,cn=(n+1)bnbn+2,求數(shù)列{cn}的前項和Tn

查看答案和解析>>

科目: 來源: 題型:選擇題

4.為測得河對岸塔AB的高,先在河岸上選一點C,使C在塔底B的正東方向上,測得點A的仰角為60°,再由點C沿北偏東15°方向走10m到位置D,測得∠BDC=45°,則塔AB的高是( 。
A.10 mB.10$\sqrt{2}$ mC.10$\sqrt{3}$ mD.10$\sqrt{6}$ m

查看答案和解析>>

科目: 來源: 題型:解答題

3.函數(shù)f(x)=axn(1-x)(x>0,n∈N*),當n=-2時,f(x)的極大值為$\frac{4}{27}$.
(1)求a的值;
(2)若方程f(x)-m=0有兩個正實根,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=x3-ax2+bx的圖象與直線12x+y-1=0相切于點(1,-11).
(1)求a,b的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+ln(x-a)a∈R.
(Ⅰ)若f(x)有兩個不同的極值點,求a的取值范圍;
(Ⅱ)當a≤-2時,用g(a)表示f(x)在[-1,0]上的最大值,求g(a)的表達式.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=x2lnx+$\frac{1}{3}$x3-$\frac{a}{2}$x2+3x.
(1)若a=2,求函數(shù)g(x)=$\frac{f(x)}{x}$的圖象在點(1,g(1))處的切線方程;
(2)若函數(shù)f(x)在($\frac{1}{e}$,e)內(nèi)存在兩個極值點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案