相關(guān)習(xí)題
 0  229912  229920  229926  229930  229936  229938  229942  229948  229950  229956  229962  229966  229968  229972  229978  229980  229986  229990  229992  229996  229998  230002  230004  230006  230007  230008  230010  230011  230012  230014  230016  230020  230022  230026  230028  230032  230038  230040  230046  230050  230052  230056  230062  230068  230070  230076  230080  230082  230088  230092  230098  230106  266669 

科目: 來源: 題型:填空題

10.若過點(diǎn)P(a,a)與曲線f(x)=xlnx相切的直線有兩條,則實(shí)數(shù)a的取值范圍是(e,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知數(shù)列{an}中,a1=1,a2k=a2k-1+(-1)k,a2k+1=a2k+2k(k∈N*),則{an}的前60項(xiàng)的和S60=232-94.

查看答案和解析>>

科目: 來源: 題型:填空題

8.如圖,在△ABC中,點(diǎn)D在邊BC上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{{\sqrt{2}}}{10}$.若△ABD的面積為7,則AB=$\sqrt{37}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知f(x)=$\frac{2^x}{{{2^x}+1}}$+ax,若f(ln3)=2,則f(ln$\frac{1}{3}$)等于( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知函數(shù)f(x)=sinx+λcosx(λ∈R)的圖象關(guān)于x=-$\frac{π}{4}$對稱,則把函數(shù)f(x)的圖象上每個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍,再向右平移$\frac{π}{3}$,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一條對稱軸方程為( 。
A.x=$\frac{π}{6}$B.x=$\frac{π}{4}$C.x=$\frac{π}{3}$D.x=$\frac{11π}{6}$

查看答案和解析>>

科目: 來源: 題型:填空題

5.在區(qū)間[-1,1]內(nèi)隨機(jī)取兩個(gè)實(shí)數(shù)x,y,則滿足y≥x2-1的概率是$\frac{5}{6}$ .

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{x}+3,x≥0\\ ax+b,x<0\end{array}$滿足條件:對于[0,3],?唯一的x2∈R,使得f(x1)=f(x2).當(dāng)f(2a)=f(3b)成立時(shí),則實(shí)數(shù)a+b=( 。
A.$\frac{{\sqrt{6}}}{2}$B.$-\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{6}}}{2}$+3D.$-\frac{{\sqrt{6}}}{2}$+3

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知復(fù)數(shù)z=$\frac{4+bi}{1-i}$(b∈R)的實(shí)部為-1,則復(fù)數(shù)$\overline z$-b在復(fù)平面上對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=(ax-x2)ex
(Ⅰ)當(dāng)a=2時(shí),求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)在(-1,1]上單調(diào)遞增,求a的取值范圍;
(Ⅲ)函數(shù)f(x)是否可為R上的單調(diào)函數(shù)?若是,求出a的取值范圍,若不是,說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知四棱錐P-ABCD中,底面ABCD為矩形,且中心為O,AB=BO=1,PA=PB=PC=PD=2,則該四棱錐的外接球的體積為$\frac{32\sqrt{3}}{27}$π.

查看答案和解析>>

同步練習(xí)冊答案