相關(guān)習(xí)題
 0  230171  230179  230185  230189  230195  230197  230201  230207  230209  230215  230221  230225  230227  230231  230237  230239  230245  230249  230251  230255  230257  230261  230263  230265  230266  230267  230269  230270  230271  230273  230275  230279  230281  230285  230287  230291  230297  230299  230305  230309  230311  230315  230321  230327  230329  230335  230339  230341  230347  230351  230357  230365  266669 

科目: 來源: 題型:填空題

20.過球O表面上一點(diǎn)A引三條長(zhǎng)度相等的弦AB、AC、AD,且兩兩夾角都為60°,若球半徑為R,求弦AB的長(zhǎng)度$\frac{2\sqrt{6}}{3}$R.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=x3+ax2+bx+a2(ab∈R)
(1)若函數(shù)f(x)在x=1處有極值10,求b的值;
(2)若對(duì)任意a∈[-4,+∞),f(x)在x∈[0,2]上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.當(dāng)n為正整數(shù)時(shí),區(qū)間In=(n,n+1),an表示函數(shù)f(x)=$\frac{1}{3}$x3-x在In上函數(shù)值取整數(shù)值的個(gè)數(shù),當(dāng)n>1時(shí),記bn=an-an-1.當(dāng)x>0,g(x)表示把x“四舍五入”到個(gè)位的近似值,如g(0.48)=0,g($\sqrt{2}$)=1,g(2.76)=3,g(4)=4,…,當(dāng)n為正整數(shù)時(shí),cn表示滿足g($\sqrt{k}$)=n的正整數(shù)k的個(gè)數(shù).
(Ⅰ)求b2,c2;
(Ⅱ) 求證:n>1時(shí),bn=cn
(Ⅲ) 當(dāng)n為正整數(shù)時(shí),集合Mn={${\frac{1}{2^k}$|g($\sqrt{k}$)=n,k∈N+}中所有元素之和為Sn,記Tn=(2n+2-n)Sn,求證:T1+T2+T3+…+Tn<3.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.定義在(0,+∞)上的函數(shù)f(x)滿足f(x)>0,且2f(x)<xf′(x)<3f(x)對(duì)x∈(0,+∞)恒成立,其中f′(x)為f(x)的導(dǎo)函數(shù),則(  )
A.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$B.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$C.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{3}$D.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=(2-a)(x-1)-2lnx,(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,$\frac{1}{3}$)上無(wú)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.《九章算術(shù)》卷5《商功》記載一個(gè)問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺.術(shù)曰:周自相乘,以高乘之,十二而一”.這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一.”就是說:圓堡瑽(圓柱體)的體積為:V=$\frac{1}{12}$×(底面的圓周長(zhǎng)的平方×高).則由此可推得圓周率π的取值為( 。
A.3B.3.14C.3.2D.3.3

查看答案和解析>>

科目: 來源: 題型:選擇題

14.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積是( 。
A.8 cm3B.12 cm3C.$\frac{32}{3}$ cm3D.$\frac{40}{3}$ cm3

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=alnx+bx2+x(a,b∈R).
(1)若a=-1,b=0,求f(x)的最小值;
(2)若f(1)=f′(1)=0,求f(x)的單調(diào)遞減區(qū)間;
(3)若a=b=1,正實(shí)數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,證明x1+x2≥$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知a,b是正實(shí)數(shù),且a+b=2,則$\frac{1}{2a}$+$\frac{1}{2b}$的最小值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

11.若正數(shù)a,b滿足ab=a+b+8,則ab的最值范圍為( 。
A.[2,+∞)B.(-∞,2]C.(-∞,16]D.[16,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案