相關(guān)習(xí)題
 0  230186  230194  230200  230204  230210  230212  230216  230222  230224  230230  230236  230240  230242  230246  230252  230254  230260  230264  230266  230270  230272  230276  230278  230280  230281  230282  230284  230285  230286  230288  230290  230294  230296  230300  230302  230306  230312  230314  230320  230324  230326  230330  230336  230342  230344  230350  230354  230356  230362  230366  230372  230380  266669 

科目: 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,∠ABC=90°,AB=BC=2,PA=AD=4.
(1)求證:CD⊥平面PAC;(2)求二面角C-PD-A的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

16.在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD垂直于底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn).
(Ⅰ)求證:PA∥平面EBD;
(Ⅲ)求二面角E-BD-P的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,在棱長為2的正方體ABCD-A′B′C′D′中,點(diǎn)E,F(xiàn)分別是棱BC,CD上的動點(diǎn).
(1)當(dāng)BE=CF時,求證:B′F⊥D′E;
(2)若點(diǎn)E為BC的中點(diǎn),在棱CD上是否存在點(diǎn)F,使二面角C′-EF-C的余弦值為$\frac{1}{3}$?若存在,請確定點(diǎn)F的位置,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

14.某城市隨機(jī)抽取一年內(nèi)100 天的空氣質(zhì)量指數(shù)(AQI)的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:
API[0,50](50,100](100,150](150,200](200,300]>300
空氣質(zhì)量優(yōu)輕度污染輕度污染中度污染重度污染
天數(shù)61418272015
(Ⅰ)若本次抽取的樣本數(shù)據(jù)有30 天是在供暖季,其中有8 天為嚴(yán)重污染.根據(jù)提
供的統(tǒng)計(jì)數(shù)據(jù),完成下面的2×2 列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該城市本年的
空氣嚴(yán)重污染與供暖有關(guān)”?
非重度污染嚴(yán)重污染合計(jì)
供暖季22830
非供暖季63770
合計(jì)8515100
(Ⅱ)已知某企業(yè)每天的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x 的關(guān)系式為y=$\left\{\begin{array}{l}{0,0≤x≤100}\\{400,100<x≤300}\\{2000,x>300}\end{array}\right.$試估計(jì)該企業(yè)一個月(按30 天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目: 來源: 題型:選擇題

13.在平面直角坐標(biāo)系中,A(-1,0),B(1,0),若曲線C上存在一點(diǎn)P,使∠APB為鈍角,則稱曲線上有鈍點(diǎn),下列曲線中“有鈍點(diǎn)的曲線”是( 。
①x2=4y;  ②$\frac{x^2}{3}+\frac{y^2}{2}=1$;  ③x2-y2=1;  ④(x-2)2+(y-2)2=4;  ⑤3x+4y=4.
A.①②④B.①②⑤C.①④⑤D.①③④

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{1-(x-1)^{2}},0≤x<2}\\{f(x-2),x≥2}\end{array}\right.$,若對于正數(shù)kn(n∈N*),關(guān)于x的函數(shù)g(x)=f(x)-knx的零點(diǎn)個數(shù)恰好為2n+1個,則k${\;}_{1}^{2}$+k${\;}_{2}^{2}$+…+${\;}_{n}^{2}$=$\frac{n}{4n+4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知f(x)=2sinxcosx+sin2x-cos2x,
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及相應(yīng)x的取值集合.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{x(x+4),x≥0}\\{x(x-4),x<0}\end{array}}$,若f(a)>f(8-a),則a的取值范圍是( 。
A.(-∞,4)B.(-4,0)C.(0,4)D.(4,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+3cost}\\{y=2+3sint}\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(與平面直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,直線l的方程為$\sqrt{2}$pcos(θ-$\frac{π}{4}$)=m.
(1)求圓C的普通方程及直線l的直角坐標(biāo)方程;
(2)設(shè)圓心C到直線l的距離等于$\sqrt{2}$,求m的值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.某中學(xué)高三(10)班女同學(xué)有45名,男同學(xué)有15名,老師按照分層抽樣的方法組建了一個4人的課外興趣小組.
(1)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);
(2)經(jīng)過一個月的學(xué)習(xí)、討論,這個興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出一名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名男同學(xué)的概率;
(3)實(shí)驗(yàn)結(jié)束后,第一次做實(shí)驗(yàn)的同學(xué)A與第二次做實(shí)驗(yàn)的同學(xué)B得到的實(shí)驗(yàn)數(shù)據(jù)的莖葉圖如圖所示,請問哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案