相關(guān)習(xí)題
 0  230367  230375  230381  230385  230391  230393  230397  230403  230405  230411  230417  230421  230423  230427  230433  230435  230441  230445  230447  230451  230453  230457  230459  230461  230462  230463  230465  230466  230467  230469  230471  230475  230477  230481  230483  230487  230493  230495  230501  230505  230507  230511  230517  230523  230525  230531  230535  230537  230543  230547  230553  230561  266669 

科目: 來源: 題型:選擇題

4.已知數(shù)據(jù)x1,x2,x3,…,xn是廣州市n(n≥3,n∈N*)個普通職工的2015年的年收入,設(shè)這n個數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上比爾.蓋茨的2015年的年收入xn+1(約80億美元),則這n+1個數(shù)據(jù)中,下列說法正確的是( 。
A.y大大增大,x一定變大,z可能不變B.y大大增大,x可能不變,z變大
C.y大大增大,x可能不變,z也不變D.y可能不變,x可能不變,z可能不變

查看答案和解析>>

科目: 來源: 題型:選擇題

3.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,且a1-a7+a13=6,則S13=(  )
A.78B.91C.39D.26

查看答案和解析>>

科目: 來源: 題型:填空題

2.(x-y)2(x+y)7的展開式中x3y6的系數(shù)為0(用數(shù)字作答)

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知一個四棱錐的底面是平行四邊形,該四棱錐的三視圖如圖所示(單位:m),則該四棱錐的體積為( 。﹎3
A.4B.$\frac{7}{3}$C.3D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

20.將序號分別為1,2,3,4,5的5張參觀券全部分給4人,每人至少1張.如果分給同一人的2張參觀券連號,那么不同的分法種數(shù)是( 。
A.24B.96C.144D.210

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=ax-$\frac{1}{a^x}$(其中a>0且a≠1,a為實(shí)數(shù)常數(shù)).
(1)討論f(x)的單調(diào)性;
(2)若atf(2t)+mf(t)≥0對于t∈[0,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.在四棱錐P-ABCD中,AB∥CD,AB=$\frac{1}{2}$CD=1,BP=BC=$\sqrt{2}$,PC=2,AB⊥平面PBC,F(xiàn)為PC的中點(diǎn).
(1)求證:BF∥平面PAD;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

17.某集團(tuán)公司為了獲得更大的收益,決定以后每年投入一筆資金用于廣告促銷.經(jīng)過市場調(diào)查,每年投入廣告費(fèi)t百萬元,可增加銷售額約(2t+$\frac{5}{t+2}$-$\frac{5}{2}$)百萬元(t≥0).
(1)若公司當(dāng)年新增收益不少于1.5百萬元,求每年投放廣告費(fèi)至少多少百萬元?
(2)現(xiàn)公司準(zhǔn)備投入6百萬元分別用于當(dāng)年廣告費(fèi)和新產(chǎn)品開發(fā),經(jīng)預(yù)測,每投入新產(chǎn)品開發(fā)費(fèi)x百萬元,可增加銷售額約($\frac{21}{x-8}$+3x+$\frac{21}{8}$)百萬元,問如何分配這筆資金,使該公司獲得新增收益最大?(新增收益=新增銷售額-投入)

查看答案和解析>>

科目: 來源: 題型:解答題

16.ABCD是復(fù)平面內(nèi)的平行四邊形,A、B、C三點(diǎn)對應(yīng)的復(fù)數(shù)分別是1+3i、-i、2+i.
(Ⅰ)求點(diǎn)D對應(yīng)的復(fù)數(shù);
(Ⅱ)求△ABC的邊BC上的高.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且b=acosc+$\frac{{\sqrt{3}}}{3}$csinA.
(Ⅰ)求角A的大;
(Ⅱ)當(dāng)a=3時,求△ABC周長的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案