相關(guān)習(xí)題
 0  230986  230994  231000  231004  231010  231012  231016  231022  231024  231030  231036  231040  231042  231046  231052  231054  231060  231064  231066  231070  231072  231076  231078  231080  231081  231082  231084  231085  231086  231088  231090  231094  231096  231100  231102  231106  231112  231114  231120  231124  231126  231130  231136  231142  231144  231150  231154  231156  231162  231166  231172  231180  266669 

科目: 來源: 題型:解答題

18.已知圓E的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,取相同單位長(zhǎng)度(其中(ρ,θ),ρ≥0,θ∈[0,2π))).
(1)直線l過原點(diǎn),且它的傾斜角α=$\frac{3π}{4}$,求l與圓E的交點(diǎn)A的極坐標(biāo)(點(diǎn)A不是坐標(biāo)原點(diǎn));
(2)直線m過線段OA中點(diǎn)M,且直線m交圓E于B、C兩點(diǎn),求||MB|-|MC||的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

17.在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,B=45°,b=3.
(Ⅰ)若cosC+$\sqrt{2}$cosA=1,求A和c的值;
(Ⅱ)若$\overrightarrow m$=(2sin$\frac{A}{2}$,-1),$\overrightarrow n$=($\sqrt{3}$cos$\frac{A}{2}$,2sin2$\frac{A}{2}}$),f(A)=$\overrightarrow m$•$\overrightarrow n$,求f(A)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.在邊長(zhǎng)為1的正方形ABCD中,已知M為線段AD的中點(diǎn),P為線段AD上的一點(diǎn),若線段BP=CD+PD,則( 。
A.∠MBA=$\frac{3}{4}$∠PBCB.∠MBA=$\frac{2}{3}$∠PBCC.∠MBA=$\frac{1}{2}$∠PBCD.∠MBA=$\frac{1}{3}$∠PBC

查看答案和解析>>

科目: 來源: 題型:填空題

15.如圖,P為⊙O外一點(diǎn),PA是⊙O的切線,A為切點(diǎn),割線PBC與⊙O相交于B,C兩點(diǎn),且PC=3PA,D為線段BC的中點(diǎn),AD的延長(zhǎng)線交⊙O于點(diǎn)E.若PB=1,則PA的長(zhǎng)為3;AD•DE的值是16.

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,已知等腰梯形ABCD為⊙O的內(nèi)接四邊形,AB∥CD,PA=AB=2CD=2,PA⊥平面ABCD,已知E為PA的中點(diǎn),連接DE.
(1)證明:DE∥平面PBC;
(2)求二面角D-BC-P的正弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.設(shè)函數(shù)f′(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),若f(x)-f(-x)=2x3,且當(dāng)x>0時(shí),f′(x)>3x2,則不等式f(x)-f(x-1)>3x2-3x+1的解集為( 。
A.(-∞,2)B.(${\frac{1}{2}$,+∞)C.(-∞,$\frac{1}{2}}$)D.(2,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知線段PD垂直于正方形ABCD所在平面,D為垂足,PD=3,AB=4,連接PA、PB、PC.
(1)求證:平面PBC⊥平面PDC;
(2)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.過點(diǎn)A和圓心O的直線交⊙O于B,C兩點(diǎn)(AB<AC),AD與⊙O切于點(diǎn)D,DE⊥AC于E,AD=3$\sqrt{5}$,AB=3,則BE的長(zhǎng)度為( 。
A.1B.$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,已知PA與圓O相切于點(diǎn)A,經(jīng)過點(diǎn)O的割線PBC交圓O于點(diǎn)B、C,∠APC的平分線分別交AB、AC于點(diǎn)D、E,AC=AP.
(1)證明:∠ADE=∠AED;
(2)證明PC=$\sqrt{3}$PA.

查看答案和解析>>

科目: 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立直角坐標(biāo)系,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2cosα+\sqrt{3}\\ y=2sinα+1\end{array}$(α為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)求曲線C1的極坐標(biāo)方程;
(Ⅱ)若射線θ=$\frac{π}{6}$(ρ≥0)交曲線C1和C2于A、B(A、B異于原點(diǎn)),求|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案