相關(guān)習(xí)題
 0  231046  231054  231060  231064  231070  231072  231076  231082  231084  231090  231096  231100  231102  231106  231112  231114  231120  231124  231126  231130  231132  231136  231138  231140  231141  231142  231144  231145  231146  231148  231150  231154  231156  231160  231162  231166  231172  231174  231180  231184  231186  231190  231196  231202  231204  231210  231214  231216  231222  231226  231232  231240  266669 

科目: 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=|x+1|-|x-2|.
(1)若不等式f(x)≤a的解集為(-∞,1),求a的值;
(2)若g(x)=$\frac{1}{f(x)+m}$的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-2≥0}\\{y-x-1≤0}\\{x≤1}\end{array}\right.$,設(shè)μ=x+2y,v=2x+y,則$\frac{μ}{v}$的最大值為( 。
A.1B.$\frac{5}{4}$C.$\frac{7}{5}$D.2

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖:四邊形ABCD為等腰梯形,且AD∥BC,E為BC中點,AB=AD=BE.現(xiàn)沿DE將△CDE折起成四棱錐C′-ABED,點O為ED的中點.
(1)在棱AC′上是否存在一點M,使得OM⊥平面C′BE?并證明你的結(jié)論;
(2)若AB=2,求四棱錐C′-ABED的體積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,動點P到點D(2,3)的距離為4,設(shè)點P的軌跡為C.
(Ⅰ)寫出C的方程;
(Ⅱ)設(shè)直線y=kx+1與C交于A,B兩點,當(dāng)k為何值時,$\overrightarrow{DA}$⊥$\overrightarrow{DB}$,此時|$\overrightarrow{AB}$|的值是多少?

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)的圖象在點(1,0)處的切線方程;
(2)若對?x∈(0,+∞)有2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知a∈R,討論函數(shù)f(x)=x+$\frac{a}{x}$(x>0)的單調(diào)性(寫出過程).

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=cos2(x-$\frac{π}{6}}$)-cos2x.
(1)求f(x)的最小正周期及單調(diào)增區(qū)間;
(2)求f(x)在區(qū)間[-$\frac{π}{3},\frac{π}{4}}$]上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,且經(jīng)過點A(2,0).
(I)求橢圓的方程;
(Ⅱ)設(shè)直線l經(jīng)過點(1,0)與橢圓交于B、C(不與A重合)兩點,
(i)若△ABC的面積為$\frac{\sqrt{13}}{4}$,求直線l的方程;
(ii)若AB與AC的斜率之和為3,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.如圖,將繪有函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,$\frac{π}{2}$<φ<π)部分圖象的紙片沿x軸折成直二面角,若AB之間的空間距離為$\sqrt{15}$,則f(-1)=(  )
A.-1B.1C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+2(a∈R)在x=3時取得極小值.
(Ⅰ) 求a的值;
(Ⅱ) 當(dāng)x∈[-2,4]時,求f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案