相關(guān)習(xí)題
 0  231081  231089  231095  231099  231105  231107  231111  231117  231119  231125  231131  231135  231137  231141  231147  231149  231155  231159  231161  231165  231167  231171  231173  231175  231176  231177  231179  231180  231181  231183  231185  231189  231191  231195  231197  231201  231207  231209  231215  231219  231221  231225  231231  231237  231239  231245  231249  231251  231257  231261  231267  231275  266669 

科目: 來源: 題型:填空題

13.定義在R上的函數(shù)f(x)的圖象過點(0,5),其導(dǎo)函數(shù)是f′(x),且滿足f′(x)<1-f(x),則不等式exf(x)>ex+4(e為自然對數(shù)的底數(shù))的解集為(-∞,0).

查看答案和解析>>

科目: 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C:ρ=$\frac{3}{2-cosθ}$,θ∈[0,2π),直線l$\left\{\begin{array}{l}x=3+t\\ y=2+2t\end{array}\right.(t$為參數(shù),t∈R)
(1)求曲線C和直線l的普通方程;
(2)設(shè)直線l和曲線C交于A、B兩點,求|AB|的值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=|ax+1|,a∈R.
(Ⅰ)若?x∈R,f(x)+f(x-2)≥1恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若f($\frac{a-1}{a}$)+f($\frac{b-1}{a}$)+f($\frac{c-1}{a}$)=4,求f($\frac{{{a^2}-1}}{a}$)+f($\frac{{{b^2}-1}}{a}$)+f($\frac{{{c^2}-1}}{a}$)的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖所示,圓O的弦CD垂直于直徑AB,垂足為H,HB=2CD,AH=1cm.求弦CD的長度.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=x3-3x
(1)求函數(shù)f(x)的單調(diào)區(qū)間,并求函數(shù)f(x)的極值;
(2)若方程x3-3x-a+1=0有三個相異的實數(shù)根,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{|{x+1}|,x≤0}\\{|{{{log}_{\frac{1}{2}}}x}|,x>0}\end{array}}$若方程f(x)=k有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則$\frac{{({x_1}+{x_2}){x_3}}}{2}$+$\frac{1}{{x_3^2{x_4}}}$的取值范圍是( 。
A.[$\frac{3}{2}$,+∞)B.(-∞,0)C.(0,$\frac{3}{2}$]D.(0,$\frac{3}{2}$)

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2+bx,其中g(shù)(x)的函數(shù)圖象在點(1,g(1))處的切線平行于x軸.
(Ⅰ)確定a與b的關(guān)系;
(Ⅱ)若a≤0,判斷函數(shù)g(x)的單調(diào)性;
(Ⅲ)設(shè)斜率為k的直線與函數(shù)f(x)的圖象交于兩點A(x1,y1),B(x2,y2)(x1<x2),求證:$\frac{1}{x_2}$<k<$\frac{1}{x_1}$.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知函數(shù)f(x)=x3-tx2+3x,函數(shù)f(x)在區(qū)間(1,3)上單調(diào)遞減,則實數(shù)t的取值范圍是[5,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知函數(shù)f(x)=alnx-x+2,其中a≠0.若對于任意的x1∈[1,e],總存在x2∈[1,e],使得f(x1)+f(x2)=4,則實數(shù)a=e+1.

查看答案和解析>>

科目: 來源: 題型:填空題

4.函數(shù)y=$\frac{1}{3}$x3+x2+ax在x∈R上單調(diào)遞增,則實數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

同步練習(xí)冊答案